

### **Drainage Design Report**

for

Development

at

Broomhill Road, Dublin 24

Job No:D1679Date:April 2022Local Authority:South Dublin County CouncilRevision:PL2









Calmount Park, Ballymount, Dublin 12.

**Tel:** 353 1 4500694 **Fax:** 353 1 4264340 www.kavanaghburke.ie

Ulick Burke & Associates Limited. Registered in Ireland No: 233579. V.A.T. Registration No: IE 82335791 Registered Address: Unit G3, Calmount Park, Ballymount, Dublin 12. Directors: U.Burke, R.Burke, P.Kavanagh

#### Contents:

- Introduction
- Surface Water Attenuation Calculations

#### Specification/Product Information for;

- a) Petrol Interceptor
- b) Silt Trap
- c) Flow Control Device
- Appendix A Storm Water Network Design
- Appendix B Foul Sewer Network Design
- Appendix C Irish Water Confirmation of Feasibility

#### Introduction

#### SURFACE WATER RUNOFF MANAGEMENT

The surface water runoff generated from the proposed development will be routed through a series of Sustainable Urban Drainage System (SuDS) elements. These elements will promote runoff interception, detention and infiltration at source before runoff reaches the underground (StormTech or equivalent type) attenuation system with integrated interception storage catering for all rainfall events up to 5mm. The flow control device will be installed on the outfall of the proposed site drainage system designed to drain and attenuate 1 in 100 year storm event of any duration. Therefore, no flooding on or off the site will be caused by the runoff originating from the development in the event of storm up to 1in100 year return. Since the temporary flood storage forms a part of the overall attenuation tank, the maximum allowable discharge was limited to the green filed runoff rate QBAR (see calculations in the succeeding chapters) as per criterion 4.3 "River Flood Protection" chapter 6.3.4 of GDSDS. All flows and volumes for the storm water network design and the attenuation sizing were calculated with a 20% climate change factor applied to all rainfall intensities. The interception of the first flush runoff (capturing first 5mm or more of every rainfall event) will be provided in the lowered base of the permeable surfacing, in green roof substrate, tree pits, bioretention areas and in the base of the proposed attenuation system. The proposed attenuation system will be equipped with a horizontal isolator row (inspection tunnel) to enable access for inspection and maintenance activities such as jetting and debris removal in the unlikely event of such debris passing through the proposed SUDS features, trapped gullies, vortex type silt trap/debris separator and the proprietary petrol interceptor. A proprietary Petrol Interceptor and Silt Trap will be provided on the inlet to the proposed attenuation to improve the quality of the discharge by capturing all possible debris and hydrocarbons pollution from this development. The "hydrobrake" or equivalent flow control device provided on the outfall pipe of the attenuation system is designed to control the flow to green field runoff rate QBAR=3.0 I/sec as described in this report.

#### RUNOFF TREATMENT MANAGEMENT TRAIN

The treatment train approach was applied to the storm water network and attenuation design to ascertain that both the runoff quality and quantity are appropriately addressed. An array of techniques has been used to fulfil the requirements of each element of the treatment train:

Pollution prevention – To prevent chemicals and other pollutants from contaminating the rainfall runoff, a maintenance regime for the proposed development will be established and it will include regular sweeping of the estate roads and collection of rubbish. Waste bins provided will be watertight and will incorporate lids or will be located in designated bin storage to prevent the rainfall flushing the contaminants out of them. Proprietary silt trap and petrol interceptor will be provided on the surface water drainage network to intercept debris, silts and hydrocarbons and prevent them from entering the attenuation tank and from being discharged to the soil or receiving watercourse. Source control – To detain and infiltrate the runoff as close as possible to the point of origin, we have included the following infiltration SUDS devices:

- Extensive green roofs
- Permeable surfacing
- Irrigation tree pits
- Bioretention Areas

The above mentioned devices are explained in greater detail in the next chapter.

- Site control To deal with as much of the runoff as possible within the site, all storm water runoff will be intercepted in the Suds devices (permeable surfacing, tree pits, green roofs and bioretention areas). However, interception storage is designed into the proposed attenuation tank. This interception storage volume is designed to capture the first 5mm of any rainfall and store it in the lowered portion of the attenuation system where it will dissipate by infiltration to the soil beneath. A conservative approach was taken and all suds devices upstream of the tank were not taken into account for sizing of the interception storage in the attenuation tank. This will further reduce the quantity of water that discharges from the site.
- Regional control to mimic the behaviour of the green field site and protect the receiving watercourse, the attenuation tank is designed to cater for all durations of rainfall up to 100-year return period for the purpose of minimising on-site and offsite flooding.

#### SUDS DEVICES

During the surface water drainage design process, a matrix of possible SUDS devices and their environmental benefits were analysed to decide on which of these elements were suitable for inclusion in the proposed development. The following is our review of these devices;

#### **Excluded SUDS devices:**

Ponds, Wetlands, Detention basins, Infiltration Basins are not suitable for the site of this size and its location and nature (relatively small brown field site within existing business park to be redeveloped to high density accommodation apartment complex).

Any deep infiltration device like soakaways and infiltration trenches are not feasible due to the nature of the site and the proximity to proposed and existing surrounding structures.

Linear surface infiltration devices like swales, filter strips and filter drains are not incorporated however bio-retention basins and irrigation tree pits are included which provide similar SUDS function of allowing runoff pass through for filtration and possible runoff reduction benefits.

#### SUDS devices incorporated in the storm water network and attenuation design:

<u>Pervious paving</u> is proposed to all carparking spaces and pedestrian circulation areas throughout the development allowing storm water infiltration into underlying stone and soil. This device not only reduces the quantity of runoff but it also has a positive impact on runoff quality. Due to the shallow nature of the underlying build-up, permeable paving can be utilised even on sites with high ground water levels where other deeper infiltration devices would not work. According to CIRIA 697 SUDS Manual: "Pervious surfaces, together with their associated substructures, intercept surface water runoff and provide a pollutant treatment

medium prior to discharge to receiving waters. Treatment processes that occur within the surface structure, the subsurface matrix (including soil layers where infiltration is allowed) and the geotextile layers include:

- filtration
- adsorption
- biodegradation
- sedimentation."

Extensive green roof is proposed to the roofs of the proposed apartment blocks as shown on the drainage layout submitted as part of this application. This roof type allows for storm water interception and disposal through transpiration and evaporation. In addition to quantity reduction, the green roofs will improve the quality of the runoff and will become a wildlife habitat, improve biodiversity and boost the environmental credentials of the development. According to CIRIA 679 SUDS Manual, typical green roof should attenuate storms up to a twoyear return period event. Sustainable drainage studies indicate that Green Roofs reduce annual run-off from roofs by at least 50%, and more usually by 60-70%. Moreover, the rate of release following heavy rainfall will be slower thus assisting with issues relating to storm surges. Rainfall runoff from roofs can contain pollutants for example, from bird droppings; atmospheric pollution; as well as standard roof covering such as bitumen which give off a range of pollutants under heat stress, which then are carried along with the runoff. One of the roles of a sustainable urban drainage system is to remove some if not all of this pollution. Green roofs can retain and bind contaminants that fall on their surface either as dust or dissolved in rainwater. Research by (Johnston et al, 2004) found that 95% of heavy metals are removed from runoff by green roofs and nitrogen levels can be reduced.

<u>Bioretention Areas</u> formed by providing shallow depressed vegetated areas are incorporated into planting areas where there are no underground services. These areas area designed to collect and treat surface water runoff before discharging it to the surface water drainage network through low level underdrain pipes. Bioretention areas will intercept the runoff from hardstanding surfaces and slow down the outflow to the drainage network. The runoff quality is improved by filtering it through enhanced vegetation and the underlying soil. Since the soil (filtration medium) is engineered, bioretention areas can be installed on sites with low soil permeability. Bioretention areas, while having a moderate impact on the total runoff volume reduction, have high potential to remove suspended solids, heavy metals, nutrients (phosphorous, nitrogen) and to treat fine suspended sediments and dissolved pollutants.

<u>Irrigation Tree Pits</u> are proposed to collect the runoff from the proposed access road and other hardstanding areas. The proposed tree pits will have a positive impact on the total storm water runoff reduction by allowing for runoff infiltration to sub soil. These tree pits will be provided with overflow pipes discharging excess runoff to the proposed on-site attenuation tank.

In addition to the above SuDS devices, pre-treatment components such as "Surf-Sep" or equivalent vortex debris and silt particle separator and "Klargester" or equivalent oil separator are proposed to collect sediments and pollutants and treat the surface water runoff from areas of possible hydrocarbons spills that are exposed to rainfall. All runoff from carriageways, roofs and any hardstanding areas will pass through the Surf-sep vortex debris and silt particle separator which according to manufacturer's specification has potential for capturing more than 95% of solid pollutants (see brochure attached). Housing developments

are low risk in relation to hydrocarbon polluted runoff however the interception precaution will be included.

An underground surface water attenuation tank is proposed as the main runoff quantity reducing device. The attenuation facility proposed is a "StormTech" (or equivalent) proprietary system formed with thermoplastic arches backfilled in specified drainage stone and wrapped in a pervious geotextile. Downstream of this tank, a flow control device will be provided which is designed to restrict the discharge off site to ensure the green field runoff rate is not exceeded. It is also important to note that the proposed surface water attenuation system incorporates an "isolator row" on the inlet. This isolator row is a single row within the tank of chambers surrounded with proprietary filter fabric, connected to an access manhole, which is designed as an additional line of defence against debris and suspended solids. Together with the proprietary pre-treatment devices of petrol interceptor and silt trap, good quality discharge will be provided with ease of inspection and maintenance ensuring a long efficient service life.

#### **Rainwater harvesting systems**

During the detailed design stage of the proposed development Environmental Design Partnership (M&E consulting engineers) will evaluate the storage and consumption of potable water. The general application of harvested storm water, particularly in sanitary applications, will be assessed to ensure compliance with SDCC and water authority recommendations and requirements and to achieve optimum reclamation of rainwater.

The detailed design stage calculations will include:

- Rainwater yield for the catchment area
- Predicted WC/Urinal flushing demand
- Size (litres) of the rainwater collection tank

The design calculations listed above will provide a cost/benefit analysis which will help to evaluate the suitability of the rainwater harvesting system for the proposed development.

#### FOUL SEWER

The proposed foul sewer, fully separated from the proposed storm water drainage, is designed for sewage and wastewater collection from the proposed buildings. The entire wastewater network was designed using the hydraulic modelling computer program to calculate pipe gradients in order to achieve minimum self-cleansing velocities of 0.75m/s throughout the proposed network. In accordance with the BS EN 752.

A pre-connection enquiry application was made to Irish Water and the response to the enquiry was issued stating that the connection is feasible subject to condition of introducing sewage flow management. The proposed pumping station will store and control the discharge from the proposed development to the Local Authority gravity network to ensure that the development will not have detrimental effect on the capacity of the downstream network. The flow control and storage measures will be installed, owned and operated by the developer until the public network upgrade (currently at preliminary design stage) is delivered and additional capacity in the network becomes available. The confirmation of feasibility letter is included as part of this planning submission.

The proposed foul sewer network and the proposed pumping station was designed to allow decommissioning of the pumping station and fully gravity-based discharge of the effluent once the capital upgrade projects is delivered. For details refer to the attached Drainage Layout Drg. Ref. D1679-D1-PL2.

#### WATERMAIN

The water supply to the proposed development will be provided through a new 150ø watermain connection to the existing Local Authority located in Broomhill Road to the west of the site. A bulk water meter will be provided on the new watermain connection and to all individual connections to the building B+C. A number of hydrants for firefighting and loop flushing purpose is proposed on-site on the 150 watermain as detailed on the attached Watermain Layout Drg. Ref. D1679-D2-PL2. A pre-connection enquiry application was made to Irish Water and the response to the enquiry was issued stating that the connection is feasible subject to upgrades. The confirmation of feasibility letter is included as part of this planning submission.

**Surface Water Attenuation Calculations** 

#### **Surface Water Attenuation Calculations:**

#### 1) Interception Storage

Calculate runoff from 5mm of rainfall on developed area.

For this calculation hardstanding areas are assumed to provide 80% runoff, and nonhardstanding areas are assumed to provide 0% runoff.

The equivalent volume of Interception Storage should be provided on site as no discharge from site should occur for this depth of rainfall. The Interception Storage on this subject site will be provided through the extensive use of green roofs, permeable surfacing and through the base of attenuation tank located along the eastern and southern boundaries of the development.

| Catchment Area:                                   | 14599m² (1.46 ha)    |
|---------------------------------------------------|----------------------|
| Landscaping                                       | 4577m <sup>2</sup>   |
| Road                                              | 1280m <sup>2</sup>   |
| Roof Areas                                        | 4364m <sup>2</sup>   |
| Footpaths and Pedestrian Areas (permeable paving) | 4378m <sup>2</sup>   |
| Total Impermeable Areas:                          | 10022 m <sup>2</sup> |

Despite the majority of the hardstanding surfaces (car parking and pedestrian areas) being permeable for the purpose of interception and attenuation storage calculations all hard standing areas are deemed impervious.

| Design Impermeable Areas for       | 10022m <sup>2</sup> x 0.8 =                          |
|------------------------------------|------------------------------------------------------|
| Interception storage calculations: | 8018m <sup>2</sup>                                   |
| Total volume for 5mm rainfall:     | 5mm x 8018m <sup>2</sup> =<br><b>40m<sup>3</sup></b> |

Therefore a minimum Interception Storage volume of 40m<sup>3</sup> should be provided. This will prevent discharge from the site during rainfall events of up to 5mm rainfall. For the basis of this calculation infiltration will be provided through the base of the attenuation tank. The soft landscaping and permeable surfacing on site will also be a significant source of rainfall infiltration.

#### 2) Greenfield Runoff Rate – QBAR, (mean annual flood flow):

QBAR<sub>rural</sub> (m<sup>3</sup>/sec) =  $0.00108 \times AREA^{0.89} \times SAAR^{1.17} \times SOIL^{2.17}$ 

SAAR (309000E, 228000N): 771 mm

Soil Index: S1 (very low runoff) S2 S3 (moderate runoff) S4 S5 (very high runoff)

 $Soil = 0.1(Soil_1) + 0.3(Soil_2) + 0.37(Soil_3) + 0.47(Soil_4) + 0.53(Soil_5)$ 

As the site is relatively small in catchment terms the soil class will be 100% Soil<sub>2</sub> as per online Wallingford Procedure Greenfield runoff estimation tool on www.uksuds.com

| Soil Class:       | Soil <sub>2</sub> |
|-------------------|-------------------|
| Runoff Potential: | Low               |
| Soil Value:       | 0.3               |

QBAR:

As the site area is less than 50 hectares;

QBAR for 50 hectares is firstly calculated,

QBAR (m<sup>3</sup>/sec) = 0.00108 x AREA<sup>0.89</sup> x SAAR<sup>1.17</sup> x SOIL<sup>2.17</sup> 0.00108 x (0.5)<sup>0.89</sup> x (771)<sup>1.17</sup> x (0.3)<sup>2.17</sup> 102.03 l/sec 2.04 l/sec/Ha

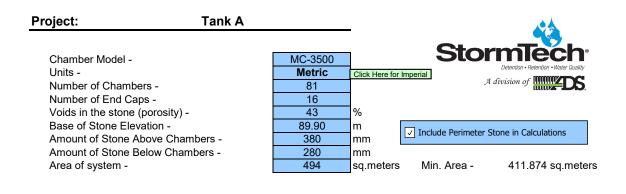
QBAR for the smaller area (i.e. the subject site area):

According to GDSDS chapter 6.3.1.4 if the separate long term storage cannot be provided and temporary flood storage forms part of the single attenuation system, all the runoff from the site should be discharged at either a rate of 2 l/s/ha or the average annual peak flow rate QBAR, whichever is greater.

#### 3) Attenuation storage volume

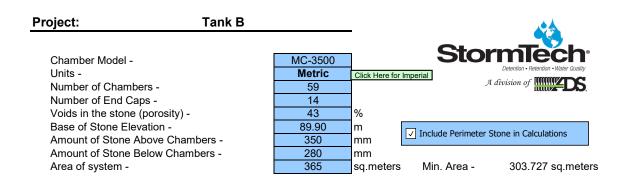
Refer to Appendix A for detailed storm water network modelling and attenuation storage volume check with a specific Hydrobrake flow control device included in the analysis

#### In summary:


**Interception Storage:** 40m<sup>3</sup> to be provided by a lowered base to the attenuation system. Attenuation System Area: 858m<sup>2</sup>. Therefore the Interception Storage Depth will equal 108mm. A lowered base level to the attenuation tank allowing base infiltration will facilitate on site discharge of this interception volume.

#### Required Attenuation Volume: 917m<sup>3</sup> to be provided within the attenuation system on site.

Temporary Flood Storage: The proposed attenuation storage will accommodate all rainfall events of all durations up to 1 in 100 years return. Therefore no separate flood storage is needed.


#### Total volume required: 917m<sup>3</sup>

Storm Water Network analysis and Attenuation Tank Size checks were performed using a computer hydraulic analysis software. The analysis did not highlight any ponding for any storm durations up to 1:100y return therefore the network and attenuation capacity calculated above are satisfactory. The results of the analysis are included in this report.



Г

|              |                    |                |                |                |                | Incremental    |                  |                |
|--------------|--------------------|----------------|----------------|----------------|----------------|----------------|------------------|----------------|
| Height of    | Incremental Single | Incremental    | Incremental    | Incremental    | Incremental    | Chamber, End   | Cumulative       |                |
| System       | Chamber            | Single End Cap | Chambers       | End Cap        | Stone          | Cap and Stone  | System           | Elevation      |
| (mm)         | (cubic meters)     | (cubic meters) | (cubic meters) | (cubic meters) | (cubic meters) | (cubic meters) | (cubic meters)   | (meters)       |
| 1803         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 530.67           | 91.70          |
| 1778         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 525.28           | 91.68          |
| 1753         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 519.88           | 91.65          |
| 1727         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 514.49           | 91.63          |
| 1702         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 509.10           | 91.60          |
| 1676         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 503.71           | 91.58          |
| 1651         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 498.31           | 91.55          |
| 1626         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 492.92           | 91.53          |
| 1600         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 487.53           | 91.50          |
| 1575         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 482.13           | 91.47          |
| 1549         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 476.74           | 91.45          |
| 1524         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 471.35           | 91.42          |
| 1499         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 465.96           | 91.40          |
| 1473         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 460.56           | 91.37          |
| 1448         | 0.00               | 0.00           | 0.00           | 0.00           | 5.393          | 5.39           | 455.17           | 91.35          |
| 1422         | 0.00               | 0.00           | 0.13           | 0.00           | 5.335          | 5.47           | 449.78           | 91.32          |
| 1397         | 0.01               | 0.00           | 0.45           | 0.00           | 5.199          | 5.65           | 444.31           | 91.30          |
| 1372         | 0.01               | 0.00           | 0.67           | 0.00           | 5.101          | 5.78           | 438.66           | 91.27          |
| 1346         | 0.01               | 0.00           | 0.93           | 0.01           | 4.991          | 5.93           | 432.88           | 91.25          |
| 1321         | 0.02               | 0.00           | 1.58           | 0.02           | 4.707          | 6.30           | 426.96           | 91.22          |
| 1295         | 0.03               | 0.00           | 2.36           | 0.02           | 4.369          | 6.75           | 420.65           | 91.20          |
| 1270<br>1245 | 0.04<br>0.04       | 0.00<br>0.00   | 2.87<br>3.26   | 0.03<br>0.04   | 4.147          | 7.04           | 413.90<br>406.86 | 91.17<br>91.14 |
| 1245         | 0.04               | 0.00           | 3.61           | 0.04           | 3.972<br>3.822 | 7.28<br>7.48   | 406.66<br>399.58 | 91.14<br>91.12 |
| 1219         | 0.04               | 0.00           | 3.92           | 0.05           | 3.686          | 7.66           | 399.58<br>392.11 | 91.12<br>91.09 |
| 1168         | 0.05               | 0.00           | 4.19           | 0.05           | 3.562          | 7.82           | 384.45           | 91.09          |
| 1143         | 0.05               | 0.00           | 4.19           | 0.00           | 3.450          | 7.97           | 376.63           | 91.07          |
| 1143         | 0.05               | 0.00           | 4.68           | 0.07           | 3.345          | 8.11           | 368.67           | 91.04          |
| 1092         | 0.06               | 0.01           | 4.08           | 0.08           | 3.248          | 8.24           | 360.56           | 90.99          |
| 1092         | 0.06               | 0.01           | 5.10           | 0.09           | 3.158          | 8.35           | 352.32           | 90.99          |
| 1007         | 0.00               | 0.01           | 5.29           | 0.10           | 3.071          | 8.47           | 343.97           | 90.97          |
| 1041         | 0.07               | 0.01           | 5.47           | 0.12           | 2.990          | 8.58           | 335.50           | 90.92          |
| 991          | 0.07               | 0.01           | 5.64           | 0.12           | 2.915          | 8.68           | 326.92           | 90.89          |
| 965          | 0.07               | 0.01           | 5.80           | 0.12           | 2.843          | 8.77           | 318.24           | 90.87          |
| 940          | 0.07               | 0.01           | 5.95           | 0.14           | 2.772          | 8.87           | 309.47           | 90.84          |
| 914          | 0.08               | 0.01           | 6.09           | 0.15           | 2.709          | 8.95           | 300.60           | 90.81          |
| 889          | 0.08               | 0.01           | 6.23           | 0.16           | 2.647          | 9.03           | 291.65           | 90.79          |
| 864          | 0.08               | 0.01           | 6.36           | 0.17           | 2.587          | 9.11           | 282.62           | 90.76          |
| 838          | 0.08               | 0.01           | 6.48           | 0.18           | 2.531          | 9.19           | 273.51           | 90.74          |
| 813          | 0.08               | 0.01           | 6.60           | 0.19           | 2.477          | 9.26           | 264.32           | 90.71          |
| 787          | 0.08               | 0.01           | 6.71           | 0.19           | 2.425          | 9.33           | 255.06           | 90.69          |
| 762          | 0.08               | 0.01           | 6.81           | 0.20           | 2.376          | 9.39           | 245.74           | 90.66          |
| 737          | 0.09               | 0.01           | 6.91           | 0.21           | 2.332          | 9.45           | 236.34           | 90.64          |
| 711          | 0.09               | 0.01           | 7.00           | 0.22           | 2.288          | 9.51           | 226.89           | 90.61          |
| 686          | 0.09               | 0.01           | 7.10           | 0.22           | 2.245          | 9.56           | 217.39           | 90.59          |
| 660          | 0.09               | 0.01           | 7.18           | 0.23           | 2.206          | 9.62           | 207.82           | 90.56          |
|              |                    |                |                |                |                |                |                  |                |



Г

| Height of     | Incremental Single | Incremental    | Incremental    | Incremental    | Incremental    | Incremental    | Cumulative     |           |
|---------------|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------|
| System        | Chamber            | Single End Cap | Chambers       | End Cap        | Stone          | Chamber, End   | System         | Elevation |
| ( <i>mm</i> ) | (cubic meters)     | (cubic meters) | (cubic meters) | (cubic meters) | (cubic meters) | (cubic meters) | (cubic meters) | (meters)  |
| 1778          | 0.00               | 0.00           | 0.00           | 0.00           | 3.985          | 3.98           | 387.15         | 91.68     |
| 1753          | 0.00               | 0.00           | 0.00           | 0.00           | 3.985          | 3.98           | 383.17         | 91.65     |
| 1727          | 0.00               | 0.00           | 0.00           | 0.00           | 3.985          | 3.98           | 379.19         | 91.63     |
| 1702          | 0.00               | 0.00           | 0.00           | 0.00           | 3.985          | 3.98           | 375.20         | 91.60     |
| 1676          | 0.00               | 0.00           | 0.00           | 0.00           | 3.985          | 3.98           | 371.22         | 91.58     |
| 1651          | 0.00               | 0.00           | 0.00           | 0.00           | 3.985          | 3.98           | 367.23         | 91.55     |
| 1626          | 0.00               | 0.00           | 0.00           | 0.00           | 3.985          | 3.98           | 363.25         | 91.53     |
| 1600          | 0.00               | 0.00           | 0.00           | 0.00           | 3.985          | 3.98           | 359.26         | 91.50     |
| 1575          | 0.00               | 0.00           | 0.00           | 0.00           | 3.985          | 3.98           | 355.28         | 91.47     |
| 1549          | 0.00               | 0.00           | 0.00           | 0.00           | 3.985          | 3.98           | 351.29         | 91.45     |
| 1524          | 0.00               | 0.00           | 0.00           | 0.00           | 3.985          | 3.98           | 347.31         | 91.42     |
| 1499          | 0.00               | 0.00           | 0.00           | 0.00           | 3.985          | 3.98           | 343.32         | 91.40     |
| 1473          | 0.00               | 0.00           | 0.00           | 0.00           | 3.985          | 3.98           | 339.34         | 91.37     |
| 1448          | 0.00               | 0.00           | 0.00           | 0.00           | 3.985          | 3.98           | 335.36         | 91.35     |
| 1422          | 0.00               | 0.00           | 0.10           | 0.00           | 3.943          | 4.04           | 331.37         | 91.32     |
| 1397          | 0.01               | 0.00           | 0.32           | 0.00           | 3.843          | 4.17           | 327.33         | 91.30     |
| 1372          | 0.01               | 0.00           | 0.49           | 0.00           | 3.772          | 4.27           | 323.16         | 91.27     |
| 1346          | 0.01               | 0.00           | 0.67           | 0.01           | 3.691          | 4.37           | 318.89         | 91.25     |
| 1321          | 0.02               | 0.00           | 1.15           | 0.02           | 3.484          | 4.65           | 314.52         | 91.22     |
| 1295          | 0.03               | 0.00           | 1.72           | 0.02           | 3.237          | 4.98           | 309.87         | 91.20     |
| 1270          | 0.04               | 0.00           | 2.09           | 0.03           | 3.075          | 5.19           | 304.90         | 91.17     |
| 1245          | 0.04               | 0.00           | 2.38           | 0.04           | 2.947          | 5.36           | 299.71         | 91.14     |
| 1219          | 0.04               | 0.00           | 2.63           | 0.04           | 2.837          | 5.51           | 294.35         | 91.12     |
| 1194          | 0.05               | 0.00           | 2.85           | 0.05           | 2.738          | 5.64           | 288.84         | 91.09     |
| 1168          | 0.05               | 0.00           | 3.05           | 0.06           | 2.647          | 5.76           | 283.20         | 91.07     |
| 1143          | 0.05               | 0.00           | 3.24           | 0.06           | 2.565          | 5.87           | 277.45         | 91.04     |
| 1118          | 0.06               | 0.01           | 3.41           | 0.07           | 2.488          | 5.97           | 271.58         | 91.02     |
| 1092          | 0.06               | 0.01           | 3.57           | 0.08           | 2.417          | 6.06           | 265.61         | 90.99     |
| 1067          | 0.06               | 0.01           | 3.72           | 0.08           | 2.351          | 6.15           | 259.55         | 90.97     |
| 1041          | 0.07               | 0.01           | 3.85           | 0.10           | 2.286          | 6.24           | 253.40         | 90.94     |
| 1016          | 0.07               | 0.01           | 3.98           | 0.10           | 2.227          | 6.31           | 247.16         | 90.92     |
| 991           | 0.07               | 0.01           | 4.11           | 0.11           | 2.172          | 6.39           | 240.85         | 90.89     |
| 965           | 0.07               | 0.01           | 4.22           | 0.11           | 2.119          | 6.46           | 234.46         | 90.87     |
| 940           | 0.07               | 0.01           | 4.33           | 0.13           | 2.067          | 6.53           | 228.00         | 90.84     |
| 914           | 0.08               | 0.01           | 4.44           | 0.13           | 2.020          | 6.59           | 221.48         | 90.81     |
| 889           | 0.08               | 0.01           | 4.54           | 0.14           | 1.974          | 6.65           | 214.89         | 90.79     |
| 864           | 0.08               | 0.01           | 4.63           | 0.15           | 1.931          | 6.71           | 208.24         | 90.76     |
| 838           | 0.08               | 0.01           | 4.72           | 0.15           | 1.889          | 6.76           | 201.53         | 90.74     |
| 813           | 0.08               | 0.01           | 4.80           | 0.16           | 1.849          | 6.82           | 194.77         | 90.71     |
| 787           | 0.08               | 0.01           | 4.89           | 0.17           | 1.811          | 6.87           | 187.95         | 90.69     |
| 762           | 0.08               | 0.01           | 4.96           | 0.18           | 1.774          | 6.91           | 181.09         | 90.66     |
| 737           | 0.09               | 0.01           | 5.03           | 0.18           | 1.742          | 6.96           | 174.17         | 90.64     |
| 711           | 0.09               | 0.01           | 5.10           | 0.19           | 1.709          | 7.00           | 167.22         | 90.61     |
| 686           | 0.09               | 0.01           | 5.17           | 0.19           | 1.678          | 7.04           | 160.22         | 90.59     |
| 660           | 0.09               | 0.01           | 5.23           | 0.20           | 1.649          | 7.08           | 153.17         | 90.56     |
| 635           | 0.09               | 0.01           | 5.29           | 0.21           | 1.622          | 7.12           | 146.09         | 90.54     |
| 610           | 0.09               | 0.02           | 5.35           | 0.21           | 1.594          | 7.15           | 138.98         | 90.51     |

Design Specification/Product Information for;

- a) Petrol Interceptor
- b) Silt Trap
- c) Flow Control Devices

Kingspan Klargester

# **SEPARATORS**

A RANGE OF FUEL/OIL SEPARATORS FOR PEACE OF MIND



Kingspan. **Environmental** 

ADVANCED ROTOMOULDED

CONSTRUCTION

SELEC

ON

# **Separators** A RANGE OF FUEL/OIL SEPARATORS FOR PEACE OF MIND

Surface water drains normally discharge to a watercourse or indirectly into underground waters (groundwater) via a soakaway. Contamination of surface water by oil, chemicals or suspended solids can cause these discharges to have a serious impact on the receiving water.

The Environment Regulators, Environment Agency, England and Wales, SEPA, Scottish Environmental Protection Agency in Scotland and Department of Environment & Heritage in Northern Ireland, have published guidance on surface water disposal, which offers a range of means of dealing with pollution both at source and at the point of discharge from site (so called 'end of pipe' treatment). These techniques are known as 'Sustainable Drainage Systems' (SuDS).

Where run-off is draining from relatively low risk areas such as car-parks and non-operational areas, a source control approach, such as permeable surfaces or infiltration trenches, may offer a suitable means of treatment, removing the need for a separator.

Oil separators are installed on surface water drainage systems to protect receiving waters from pollution by oil, which may be present due to minor leaks from vehicles and plant, from accidental spillage.

Effluent from industrial processes and vehicle washing should normally be discharged to the foul sewer (subject to the approval of the sewerage undertaker) for further treatment at a municipal treatment works.

#### SEPARATOR STANDARDS AND TYPES

A British (and European) standard (EN 858-1 and 858-2) for the design and use of prefabricated oil separators has been adopted. New prefabricated separators should comply with the standard.

#### SEPARATOR CLASSES

The standard refers to two 'classes' of separator, based on performance under standard test conditions.

#### CLASS I

Designed to achieve a concentration of less than 5mg/l of oil under standard test conditions, should be used when the separator is required to remove very small oil droplets.

#### **CLASS II**

Designed to achieve a concentration of less than 100mg/l oil under standard test conditions and are suitable for dealing with discharges where a lower quality requirement applies (for example where the effluent passes to foul sewer).

Both classes can be produced as full retention or bypass separators. The oil concentration limits of 5 mg/l and 100 mg/l are only applicable under standard test conditions. It should not be expected that separators will comply with these limits when operating under field conditions.

#### **FULL RETENTION SEPARATORS**

Full retention separators treat the full flow that can be delivered by the drainage system, which is normally equivalent to the flow generated by a rainfall intensity of 65mm/hr.

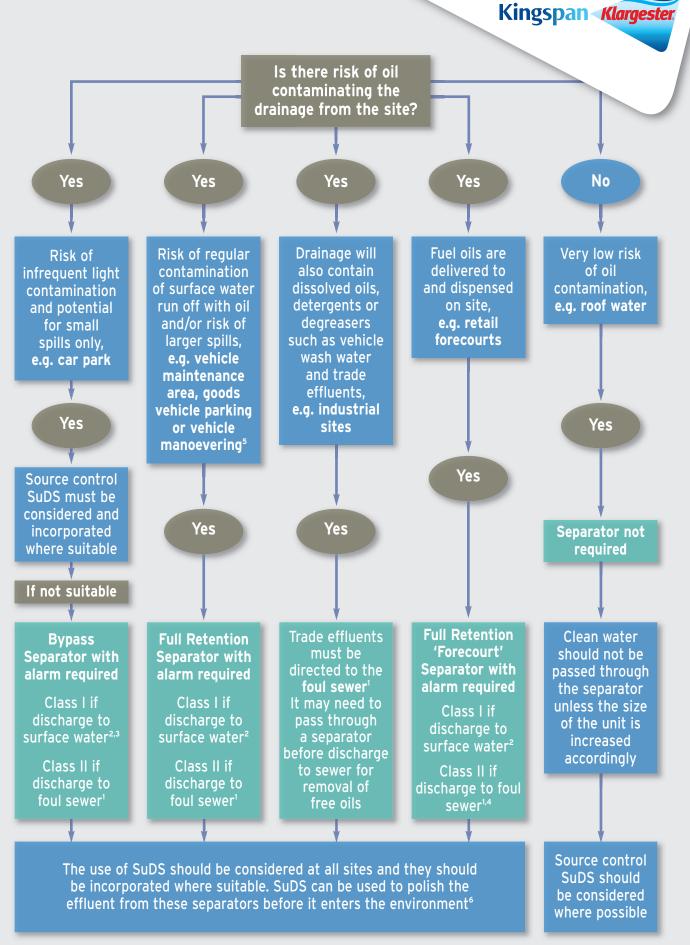
On large sites, some short term flooding may be an acceptable means of limiting the flow rate and hence the size of full retention systems. Get in touch for a FREE professional site visit and a representative will contact you within 5 working days to arrange a visit.

helpingyou@klargester.com to make the right decision or call 028 302 66799

#### **BYPASS SEPARATORS**

Bypass separators fully treat all flows generated by rainfall rates of up to 6.5mm/hr. This covers over 99% of all rainfall events. Flows above this rate are allowed to bypass the separator. These separators are used when it is considered an acceptable risk not to provide full treatment for high flows, for example where the risk of a large spillage and heavy rainfall occurring at the same time is small.

#### FORECOURT SEPARATORS


Forecourt separators are full retention separators specified to retain on site the maximum spillage likely to occur on a petrol filling station. They are required for both safety and environmental reasons and will treat spillages occurring during vehicle refuelling and road tanker delivery. The size of the separator is increased in order to retain the possible loss of the contents of one compartment of a road tanker, which may be up to 7,600 litres.

#### SELECTING THE RIGHT SEPARATOR

The chart on the following page gives guidance to aid selection of the appropriate type of fuel/oil separator for use in surface water drainage systems which discharge into rivers and soakaways.

For further detailed information, please consult the Environment Agency Pollution Prevention Guideline 03 (PPG 3) 'Use and design of oil separators in surface water drainage systems' available from their website.

Klargester has a specialist team who provide technical assistance in selecting the appropriate separator for your application.



<sup>1</sup> You must seek prior permission from your local sewer provider before you decide which separator to install and before you make any discharge.

4 In certain circumstances, the sewer provider may require a Class 1 separator for discharges to sewer to prevent explosive atmospheres from being generated.

6 In certain circumstances, a separator may be one of the devices used in the SuDS scheme. Ask us for advice.

<sup>2</sup> You must seek prior permission from the relevant environmental body before you decide which separator to install.

<sup>3</sup> In this case, if it is considered that there is a low risk of pollution a source control SuDS scheme may be appropriate.

<sup>5</sup> Drainage from higher risk areas such as vehicle maintenance yards and goods vehicle parking areas should be connected to foul sewer in preference to surface water.

# Bypass NSB RANGE

#### APPLICATION

Bypass separators are used when it is considered an acceptable risk not to provide full treatment, for very high flows, and are used, for example, where the risk of a large spillage and heavy rainfall occurring at the same time is small, e.g.

- Surface car parks.
- Roadways.
- Lightly contaminated commercial areas.

#### PERFORMANCE

Klargester were one of the first UK manufacturers to have separators tested to EN 858-1. Klargester have now added the NSB bypass range to their portfolio of certified and tested models. The NSB number denotes the maximum flow at which the separator treats liquids. The British Standards Institute (BSI) tested the required range of Klargester full retention separators and certified their performance in relation to their flow and process performance assessing the effluent qualities to the requirements of EN 858-1. Klargester bypass separator designs follow the parameters determined during the testing of the required range of bypass separators.

Each bypass separator design includes the necessary volume requirements for:

- Oil separation capacity.
- Oil storage volume.
- Silt storage capacity.
- Coalescer.

The unit is designed to treat 10% of peak flow. The calculated drainage areas served by each separator are indicated according to the formula given by PPG3 NSB = 0.0018A(m2). Flows generated by higher rainfall rates will pass through part of the separator and bypass the main separation chamber.

Class I separators are designed to achieve a concentration of 5mg/litre of oil under standard test conditions.

Class II separators are designed to achieve a concentration of 100mg/litre of oil under standard test conditions.

#### FEATURES

- Light and easy to install.
- Class I and Class II designs.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.
- Vent points within necks.
- Oil alarm system available (required by EN 858-1 and PPG3).
- Extension access shafts for deep inverts.
- Maintenance from ground level.
- GRP or rotomoulded construction (subject to model).

To specify a nominal size bypass separator, the following information is needed:-

- The calculated flow rate for the drainage area served. Our designs are based on the assumption that any interconnecting pipework fitted elsewhere on site does not impede flow into or out of the separator and that the flow is not pumped.
- The required discharge standard. This will decide whether a Class I or Class II unit is required.
- The drain invert inlet depth.
- Pipework type, size and orientation.

#### SIZES AND SPECIFICATIONS

| UNIT<br>Nominal<br>Size | FLOW<br>(I/s) | PEAK FLOW<br>RATE (I/s) | DRAINAGE<br>AREA (m²) | STOF<br>Capacity<br>Silt |      | UNIT<br>LENGTH (mm) | UNIT DIA.<br>(mm) | ACCESS<br>SHAFT<br>DIA. (mm) | BASE TO<br>INLET INVERT<br>(mm) | BASE TO<br>OUTLET<br>INVERT | STANDARD<br>FALL ACROSS<br>(mm) | MIN. INLET<br>INVERT<br>(mm) | STANDARD<br>PIPEWORK<br>DIA. (mm) |
|-------------------------|---------------|-------------------------|-----------------------|--------------------------|------|---------------------|-------------------|------------------------------|---------------------------------|-----------------------------|---------------------------------|------------------------------|-----------------------------------|
| NSBP003                 | 3             | 30                      | 1670                  | 300                      | 45   | 1700                | 1350              | 600                          | 1420                            | 1320                        | 100                             | 500                          | 160                               |
| NSBP004                 | 4.5           | 45                      | 2500                  | 450                      | 60   | 1700                | 1350              | 600                          | 1420                            | 1320                        | 100                             | 500                          | 160                               |
| NSBP006                 | 6             | 60                      | 3335                  | 600                      | 90   | 1700                | 1350              | 600                          | 1420                            | 1320                        | 100                             | 500                          | 160                               |
| NSBE010                 | 10            | 100                     | 5560                  | 1000                     | 150  | 2069                | 1220              | 750                          | 1450                            | 1350                        | 100                             | 700                          | 315                               |
| NSBE015                 | 15            | 150                     | 8335                  | 1500                     | 225  | 2947                | 1220              | 750                          | 1450                            | 1350                        | 100                             | 700                          | 315                               |
| NSBE020                 | 20            | 200                     | 11111                 | 2000                     | 300  | 3893                | 1220              | 750                          | 1450                            | 1350                        | 100                             | 700                          | 375                               |
| NSBE025                 | 25            | 250                     | 13890                 | 2500                     | 375  | 3575                | 1420              | 750                          | 1680                            | 1580                        | 100                             | 700                          | 375                               |
| NSBE030                 | 30            | 300                     | 16670                 | 3000                     | 450  | 4265                | 1420              | 750                          | 1680                            | 1580                        | 100                             | 700                          | 450                               |
| NSBE040                 | 40            | 400                     | 22222                 | 4000                     | 600  | 3230                | 1920              | 600                          | 2185                            | 2035                        | 150                             | 1000                         | 500                               |
| NSBE050                 | 50            | 500                     | 27778                 | 5000                     | 750  | 3960                | 1920              | 600                          | 2185                            | 2035                        | 150                             | 1000                         | 600                               |
| NSBE075                 | 75            | 750                     | 41667                 | 7500                     | 1125 | 5841                | 1920              | 600                          | 2235                            | 2035                        | 200                             | 950                          | 675                               |
| NSBE100                 | 100           | 1000                    | 55556                 | 10000                    | 1500 | 7661                | 1920              | 600                          | 2235                            | 2035                        | 200                             | 950                          | 750                               |
| NSBE125                 | 125           | 1250                    | 69444                 | 12500                    | 1875 | 9548                | 1920              | 600                          | 2235                            | 2035                        | 200                             | 950                          | 750                               |

Advanced rotomoulded construction on selected models on selected models • Compact and robust • Require less backfill • Require less backfill

# Full Retention NSF RANGE

#### **APPLICATION**

Full retention separators are used in high risk spillage areas such as:

- Fuel distribution depots.
- н. Vehicle workshops.
- Scrap Yards .

#### PERFORMANCE

Klargester were the first UK manufacturer to have the required range (3-30 l/sec) certified to EN 858-1 in the UK. The NSF number denotes the flow at which the separator operates.

The British Standards Institute (BSI) have witnessed the performance tests of the required range of separators and have certified their performance, in relation to their flow and process performance to ensure that they met the effluent quality requirements of EN 858-1. Larger separator designs have been determined using the formulas extrapolated from the test range.

Each full retention separator design includes the necessary volume requirements for:

- Oil storage volume.
- Oil separation capacity. Silt storage capacity.
- Coalescer (Class I units only). н.
- Automatic closure device.

Klargester full retention separators treat the whole of the specified flow.

#### **FEATURES**

- Light and easy to install.
- Class I and Class II designs. н.
- 3-30 l/sec range independently tested and performance sampled, . certified by the BSI.
- Inclusive of silt storage volume.
- Fitted inlet/outlet connectors.

- Oil alarm system available.
- Vent points within necks. .
- Extension access shafts for deep inverts. .
- Maintenance from ground level. .
- GRP or rotomoulded construction (subject to model).

To specify a nominal size full retention separator, the following information is needed:-

■ The calculated flow rate for the drainage area served. Our designs are based on the assumption that any interconnecting pipework fitted elsewhere on site does not impede flow into or out of the separator and that the influent is not pumped.

Kingspan Klargester

Advanced omoulded construction on selected models

rotomou

Compact and robust

Require less backfill

gh, lightweight and / to handle

- The required discharge standard. This will decide whether a Class I or Class II unit is required.
- The drain invert inlet depth.
- Pipework type, size and orientation.

#### SIZES AND SPECIFICATIONS

| UNIT<br>NOMINAL | FLOW<br>(I/s) | DRAINAGE AREA<br>(m²) PPG-3 (0.018) | STORAGE<br>(lit |      | UNIT LENGTH<br>(mm) | UNIT DIA.<br>(mm) | BASE TO<br>INLET INVERT | BASE TO<br>OUTLET | MIN. INLET<br>INLET (mm) | STANDARD<br>PIPEWORK |
|-----------------|---------------|-------------------------------------|-----------------|------|---------------------|-------------------|-------------------------|-------------------|--------------------------|----------------------|
| SIZE            |               |                                     | SILT            | OIL  |                     |                   | (mm)                    | INVERT            |                          | DIA. (mm)            |
| NSFP003         | 3             | 170                                 | 300             | 30   | 1700                | 1350              | 1420                    | 1345              | 500                      | 160                  |
| NSFP006         | 6             | 335                                 | 600             | 60   | 1700                | 1350              | 1420                    | 1345              | 500                      | 160                  |
| NSFA010         | 10            | 555                                 | 1000            | 100  | 2610                | 1225              | 1050                    | 1000              | 500                      | 200                  |
| NSFA015         | 15            | 835                                 | 1500            | 150  | 3910                | 1225              | 1050                    | 1000              | 500                      | 200                  |
| NSFA020         | 20            | 1115                                | 2000            | 200  | 3200                | 2010              | 1810                    | 1760              | 1000                     | 315                  |
| NSFA030         | 30            | 1670                                | 3000            | 300  | 3915                | 2010              | 1810                    | 1760              | 1000                     | 315                  |
| NSFA040         | 40            | 2225                                | 4000            | 400  | 4640                | 2010              | 1810                    | 1760              | 1000                     | 315                  |
| NSFA050         | 50            | 2780                                | 5000            | 500  | 5425                | 2010              | 1810                    | 1760              | 1000                     | 315                  |
| NSFA065         | 65            | 3610                                | 6500            | 650  | 6850                | 2010              | 1810                    | 1760              | 1000                     | 315                  |
| NSFA080         | 80            | 4445                                | 8000            | 800  | 5744                | 2820              | 2500                    | 2450              | 1000                     | 300                  |
| NSFA100         | 100           | 5560                                | 10000           | 1000 | 6200                | 2820              | 2500                    | 2450              | 1000                     | 400                  |
| NSFA125         | 125           | 6945                                | 12500           | 1250 | 7365                | 2820              | 2500                    | 2450              | 1000                     | 450                  |
| NSFA150         | 150           | 8335                                | 15000           | 1500 | 8675                | 2820              | 2550                    | 2450              | 1000                     | 525                  |
| NSFA175         | 175           | 9725                                | 17500           | 1750 | 9975                | 2820              | 2550                    | 2450              | 1000                     | 525                  |
| NSFA200         | 200           | 11110                               | 20000           | 2000 | 11280               | 2820              | 2550                    | 2450              | 1000                     | 600                  |

Rotomoulded chamber construction GRP chamber construction

#### 5

#### **PROFESSIONAL INSTALLERS**

#### **Klargester Accredited Installers**

Experience shows that correct installation is a prerequisite for the long-lasting and successful operation of any wastewater treatment product. This is why using an installer with the experience and expertise

to install your product is highly recommended.

#### Services include :

- Site survey to establish ground conditions and soil types
- Advice on system design and product selection
- Assistance on gaining environmental consents and building approvals
- Tank and drainage system installation
- Connection to discharge point and electrical networks
- Waste emptying and disposal

Discover more about the Accredited Installers and locate your local expert online.

#### www.klargester.com/installers



#### **CARE & MAINTENANCE**

**Kingspan Environmental Services** 

Who better to look after your treatment plant than the people who designed and built it?



Kingspan Environmental have a dedicated service division providing maintenance for wastewater products.

Factory trained engineers are available for site visits as part of a planned maintenance contract or on a one-off call out basis.

To find out more about protecting your investment and ensuring peace of mind, call us on:

#### 0844 846 0500

or visit us online: www.kingspanenvservice.com





nvironmenta



#### COMMERCIAL WASTEWATER SOLUTIONS

- BIODISC<sup>®</sup>, BIOTEC<sup>™</sup> & ENVIROSAFE HIGH PERFORMANCE SEWAGE TREATMENT SYSTEMS
- HILLMASTER PACKAGE PUMP STATIONS
- PUMPSTOR24 PUMPING SYSTEMS
- STORMWATER ATTENUATION SYSTEMS
- OIL/WATER SEPARATORS
- BELOW GROUND STORAGE TANKS
- GREASE & SILT TRAPS



#### **NEW BUILD & RETROFIT SOLUTIONS**

- BELOW GROUND RAINWATER HARVESTING SYSTEMS
- ABOVE GROUND RAINWATER HARVESTING SYSTEMS

#### Klargester

UK: College Road North, Aston Clinton, Aylesbury, Buckinghamshire HP22 5EW Tel: +44 (0) 1296 633000 Fax: +44 (0) 1296 633001 Scottish Office: Tel: +44 (0) 1355 248484 email: info@klargester.com

Ireland: Unit 1a, Derryboy Road, Carnbane Business Park, Newry, Co. Down BT35 6QH NI Tel : +44 (0) 28 302 66799 Fax: +44 (0) 28 302 60046 ROI Tel: 048 302 66799 Fax: 048 302 60046 email: info@klargester.ie

Visit our website www.klargester.com, or our company website www.kingspanenv.com





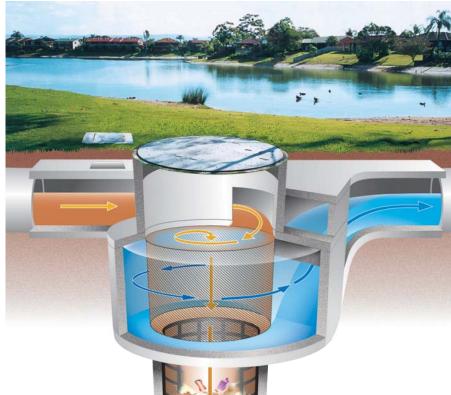






Certificate No. FM 563603

Certificate No. OHS 563604


In keeping with Company policy of continuing research and development and in order to offer our clients the most advanced products, Kingspan Environmental reserves the right to alter specifications and drawings without prior notice.





Specialists in Wastewater Treatment & Stormwater Management

# Surface Water Treatment SUDs Protector The CDS Non Blocking screening technology is an













The CDS Non Blocking screening technology is an innovative method of liquid / solid separation for Surface Water, Combined Sewer Overflows (CSO) and Foul Sewage Systems.

- **SurfSep** for Surface Water applications
- **OverSep** for Combined Sewer Overflow applications.

The technology accomplishes high efficiency separation of settleable particulate matter and capture of floatable material.

A unique feature of the CDS Technology is it's compact design. Both the *SurfSep* and *OverSep* are available as packaged systems, which can either be installed inside pre-cast concrete chamber rings, or complete BBA Approved Polyethylene Chambers unit.

#### Applications

- Storm-water Treatment
- Combined Sewer Overflow Treatment
- Parking Area Run-Off Treatment
- Vehicle Service Yard Areas
- Pre-treatment for Wetlands, Ponds and Swales
- Rainwater Harvesting
- Pre-treatment for Oil Separators
- Pre-treatment for media and Ground In-filtration Systems

www.cdstech.com.au



# Rapid installation

#### **Primary features**

- **Effective**: Capturing more than 95% of solid pollutants.
- **Non-Blocking**: Unique design takes advantage of indirect filtration and properly proportioned hydraulic forces that virtually makes the unit unblockable.
- **Non-Mechanical**: The unit has no moving parts and requires no mechanical devices to support the solid separation function.
- Low Maintenance Costs: The system has no moving parts and is fabricated of durable materials.
- **Compact & Flexible**: Design and size flexibility enables the use of various configurations.
- **High Flow Effectiveness**: The technology remains highly effective across a broad spectrum of flow ranges.
- Assured Pollutant Capture: All materials captured are retained during high flow conditions.

#### Safe & Easy Pollutant Removal:

Extraction methods allow safe and easy removal of pollutants without manual handling.

#### Surface Water System

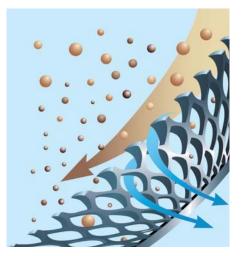
#### **Hydraulic Analysis**

In storm water applications, an analysis of the catchment in terms of its size, topography and land use will provide information for determining flow to be expected for various return periods.

The SurfSep is designed for the flow that mobilizes the gross pollutants within the catchment. Since there are variations in catchment response due to region, land use and topography, it is recommended that the selection of flow to be treated will be for return periods of between 3 months and 1 year.

# Balancing the cost to the operator against the benefits to the environment

Field evaluations to determine pollutant mobilization have found that the vast majority of pollutants are mobilized in flows that are well below the design capacity' for the conveyance facility - typically known as the 'first flush'.


Therefore it is typical not to design the *SurfSep* models to process the conveyance system's maximum flow in order to achieve a very high level of pollutant removal.

The added value benefit to the operator is reduced civil costs without compromising the benefits to the environment.

#### How it works

Water and pollutants enter the system and are introduced tangentially inside the separation chamber forming a circular flow motion. Floatables and suspended solids are diverted to the slow moving centre of the flow. Negatively buoyant solids settle out to an undisturbed sump chamber below, while the water passes

countercurrently through the separation screen. Floatables remain at the water surface and retained within the screen.



### Surface Water Treatment Systems

#### Hydraulic Design

Every application requires a detailed hydraulic analysis to ensure the final installation will perform to effect optimum solids separation without blocking the screen.

After the design flow has been determined, the appropriate standard model can be selected. A selection table is provided on page 7.

#### The Ultimate SUDs Protector

There a four principal areas of proprietary SUDs technology;

• Infiltration • Flow Control • Storage/attenuation • Treatment

*SurfSeps*, although a common form of treatment are unique. When installed upstream of any proprietary SUDs technology, the *SurfSep* protects the receiving SUDs from fine solids and debris that would otherwise accumulate over time rendering the SUDs non-operational, as the worst case.

SurfSeps have been successfully installed in front of;

- Soakaways
- Infiltration Trenches
- Filters
- Wetlands
- Ponds and Water Features
- Detention and Retention Systems
- Oil Separators
- Create storage storage systems

to remove fine solids and debris that would otherwise accumulate over time reducing the down stream effectiveness of downstream SUDs assets.

Various independent field trials have shown that the *SurfSep* can remove high levels of Phosphates, Heavy Metals and PolyAramatic Hydrocarbons (PAH's) from the flow.

#### Infiltration

*SurfSeps* have been successfully installed in front of ground Infiltration systems to remove grit, fine solids and debris which accumulates in and around the SUDs causing visual degradation in the short term and accumulation of silt and grits leading to reduced volume in the long term.

Studies have also shown that Heavy metals & PAH's accumulate within the SUDs over time before being released back to the environment resulting in elevated concentrations.

#### Detention & Retention Systems

SurfSeps have been successfully installed in front of collection and attenuation SUDs to remove grit, fine solids and debris which accumulates in the SUDs leading to potential blockage of flow regulators resulting in increased Occupational Health & Safety risk during the treatment of blockages and during the periodic cleaning operations.

#### Applications

- Rainwater Harvesting
- Road run off
- New Developments
- Motorways
- A / B Roads
- Local Roads
- Residential
- Industrial
- Commercial

#### **Purpose**

Removal of plastics, oil, grit, fine solids, organic and inorganic debris, from point source pollution.



### **Flow Control Systems**

#### **Flow Control**

Flow control is often required to reduce flooding of downstream sewer networks or receiving water courses. There are a number of ways to achieve this. The Hydroslide - Float controlled, constant flow regulator, as detailed below is ideally suited to the providing an efficient and reliable means of flow control.

There are four types of standard Hydroslide flow regulators as pictured.

- I) Mini
- 2) HydroLimiter
- 3) VS Vertical Standard
- Combi self flushing, can be mounted on the dry or wet side of the flow chamber.

Most applications can be dealt with using any of the four models to suit the flow. An accuracy of +/-5% is achievable.

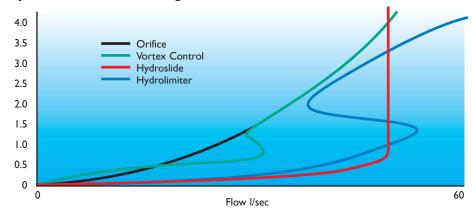











Typical SurfSep installation

#### Flow Control Technical Design

The Hydroslide regulator does not affect the flow until the flow is approaching the set discharge limit, this allows all flow (the first flush) to be discharged to the sewer. Because the flow to the sewer can be optimised at it's maximum permitted capacity the attentuation/storage capacity can be reduced over other methods of flow control, thus giving cost savings in storage provision. This is best explained by looking at a single storm event and comparing the 3 flow regulation processes as was done independantly by WRc in the report titled 'REDUCING THE COST OF STORMWATER STORAGE', Report No. PT1052, March 1995. The chart below represents 50 I/s control and up to 4m of head. The area difference between the curves being the detention volume saving.

# Typically the volume saving when using a Hydroslide regulator is between 7% to 40%

#### Representation of flow through an orifice



# **Operation & Performance**

#### **Performance Criteria**

Note: Screen apertures of 4.8 mm , 2.4 mm and 1.2 mm are available.

The 4.8 and 2.4 mm screens are generally used for Surface Water applications, with foul applications using either 2.4 or 1.2 mm aperture units.

#### Typical 1.2 mm aperture Performance

- shall remove all solids with a single dimension greater than 1.2 mm and positively contain those solids until the unit is cleaned.
- shall remove and positively contain 100 percent of all neutrally buoyant particles with a single dimension greater than 1.2 mm for all flow conditions to design capacity.
- shall remove and positively contain 100 percent of all floating trash and debris with a single dimension greater than 1.2 mm for all flow conditions to the design capacity.
- shall remove a minimum of 50 percent of oil and grease (as defined as the floating portion of total hexane extractable materials) for all flow conditions to the design capacity, without the addition of absorbents.
- shall provide the following minimum particle removal efficiencies (based on a specific gravity of 2.65):
- a) 100 percent of all particles greater than 1100 microns.
- b) 95 percent of all particles greater than 550 microns.
- c) 90 percent of all particles greater than 367 microns.
- d) 20 percent of all particles greater than 200 microns.



#### Maintenance

*SurfSep* maintenance can be site and drainage area specific. The installation should be inspected periodically to assure its condition to handle anticipated runoff. If pollutant loadings are known, then a preventive maintenance schedule can be developed based on runoff volumes processed.



Since this is seldom the case we recommend;

### New Installations

Check the condition of the installation after the first few events. This includes a visual inspection to ascertain that the unit is operating correctly and measuring the amount of deposition that has occurred in the unit. This may be achieved using a 'Dip Stick'.

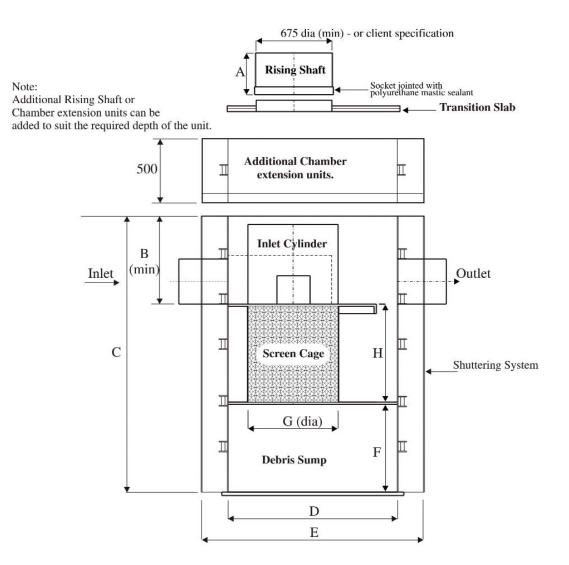


#### **Ongoing Operation**

For the first 12 months the installations sump full volume should be inspected monthly and recorded. When the inspection indicates that the sump full volume is approaching the top of the sump (base of screen) a cleanout should be undertaken.

#### **Cleaning Methods**

- Eduction (Suction)
- Basket Removal
- Mechanical Grab


#### **Maintenance Cycle**

Minimum once per year. Depending on the pollutant load it may be necessary to maintain the installation more frequently.

The operator shall be able to devise the most efficient maintenance schedule for any particular installation over a 12 month operating cycle.



# SurfSep **Dimensions**



#### SurfSep Dimensions (mm)

|         | SWI0404 | SW0604 | SW0606 | SW0804 | SW0806 | SVV0808 | SWI010 | SWI012 | SWI015 |
|---------|---------|--------|--------|--------|--------|---------|--------|--------|--------|
| А       | 370     | 370    | 370    | 370    | 370    | 370     | 500    | 500    | 500    |
| В       | 444     | 815    | 615    | 810    | 830    | 810     | 800    | 800    | 830    |
| С       | 1250    | 1985   | 1985   | 2080   | 2300   | 2480    | 2800   | 3000   | 3330   |
| D       | 800     | 1200   | 1200   | 1500   | 1500   | 1500    | 2000   | 2000   | 2000   |
| E       | 1112    | 1665   | 1665   | 1966   | 1966   | 1966    | 2475   | 2475   | 2475   |
| F       | 400     | 700    | 700    | 700    | 700    | 800     | 1000   | 1000   | 1000   |
| G (dia) | 400     | 600    | 600    | 800    | 800    | 800     | 1000   | 1000   | 1000   |
| Н       | 400     | 400    | 600    | 400    | 600    | 800     | 1000   | 1200   | 1500   |

# Selection Table - SurfSep

| Model Reference | Hydraulic Peak<br>Flow Rate I/s | Drainage Area -<br>Impermeable m <sup>2</sup> | Chamber<br>Diameter (mm) | Internal Pipe<br>Diameter (mm) |
|-----------------|---------------------------------|-----------------------------------------------|--------------------------|--------------------------------|
| SVVI 0404       | 30                              | 2,000                                         | 900                      | 150 / 225                      |
| SWI 0604        | 70                              | 5,000                                         | 1200                     | 225                            |
| SVVI 0606 / 01  | 140                             | 10,000                                        | 1200                     | 225 - 375                      |
| SWI 0606 / 02   | 200                             | 15,000                                        | 1200                     | 225 - 375                      |
| SVVI 0804       | 275                             | 20,000                                        | 1500                     | 300                            |
| SVVI 0806       | 350                             | 25,000                                        | 1500                     | 450                            |
| SVVI 0808       | 400                             | 30,000                                        | 1500                     | 450                            |
| SWI 1010        | 480                             | 35,000                                        | 2000                     | 450                            |
| SWI 1012        | 550                             | 40,000                                        | 2000                     | 450 / 750                      |
| SWI 1015        | 700                             | 50,000                                        | 2000                     | 450 / 750                      |

\* Proposed Peak Flow Rate for each model calculated using Rational Lloyd Davies with a rainfall intensity of 50mm/hr: For greater flows - special design / construction required.

#### In-Line SurfSep Units (SWI)

These units are used with in the drainage system in-line and are supplied as BBA Approved complete Polyethylene Chamber units from the selection table above.

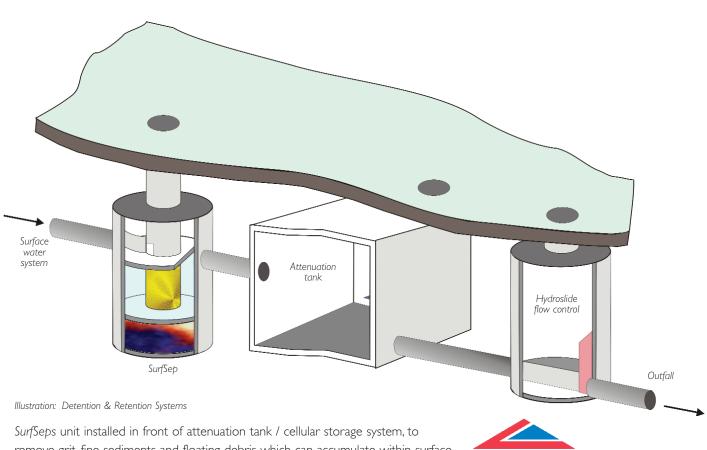
#### Off-Line SurfSep Units (SWO)

These can be designed either using pre-cast concrete or specially designed Polyethylene chambers.

#### **Model Designation**

*SurfSep* models are firstly identified by the letters SW for Surface Water followed by a letter (**I** or **O**) representing the configuration (**I**nline or **O**ffline).

A four digit number representing the screen diameter and screen height then follows to give the standard model designation for a *SurfSep* screen for installation into


standard commercially available pre-fabricated manhole chambers i.e SWI 0806. Example: SWI 0806 designates Surface Water Inline with a separation screen dia 0.8 m and screen height of 0.6m.







### **Surface Water Treatment**



remove grit, fine sediments and floating debris which can accumulate within surface water systems. Hydroslide flow control regulating the discharge to the outfall. The Hydroslide can be supplied for installation in an insitu constructed chamber, or as a complete unit housed within a pre-fabricated polyethylene manhole chamber.

### **Approved Suppliers**

If you would like more information please contact:

CDS Technologies is a multi disciplined, international, company offering a comprehensive product range of, wastewater treatment technologies and processes, and stormwater management solutions for attenuation, infiltration, flow control and overflow treatment. CDS have an established network of Distributors and Representatives. Further information can be found on our website www.cdstech.com.au

\* BBA - THIS CERTIFICATE RELATES TO PIPEX UNIVERSAL MANHOLES AND ACCESS CHAMBERS, WHICH ARE

MANUFACTURED FROM WELDED POLYPROPYLENE. This Certificate covers the use of the manholes and

chambers for drain and sewer applications where they are

used for maintenance to depths of 6 mtrs.

BBA

Alternatively please contact our approved supplier detailed left.



# Hydro-Brake<sup>®</sup> Flow Control

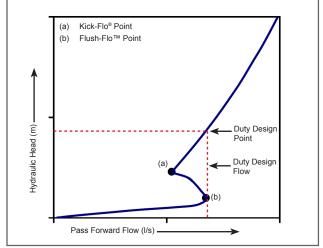
Modelling Guide

# **Unit Selection Design Guide**

#### Overview

Hydro-Brake<sup>®</sup> Flow Controls restrict the flow in surface/storm water or foul/combined sewer systems by inducing a vortex flow pattern in the water passing through the device, having the effect of increasing back-pressure.

Their 'hydrodynamic' rather than 'physical restriction' based operation provides flow regulation whilst maintaining larger clearances than most other types of flow control, making them less susceptible to blockage. Their unique "S"-shaped head-flow characteristic also enables them to pass greater flows at lower heads, which can enable more efficient use of upstream storage facilities.


This document provides guidance relating to the selection and use of Hydro-Brake<sup>®</sup> Flow Controls for use in surface/storm water and foul/combined sewer systems.

The information provided here is intended for the purposes of general guidance only - individual application requirements may differ. If in doubt, or to enquire about new product additions, please contact HRD Technologies Ltd.

#### Hydraulic Characteristics and Specification

Hydro-Brake<sup>®</sup> Flow Controls should be selected such that the duty/design flow is not exceeded at any point on the head-flow curve, see illustration right. If this is not achievable using the initially selected unit, it may be appropriate to select an alternative option (see selection guidance overleaf).

While the primary aim of a flow control is to provide a particular flow rate at a given upstream head (giving a design/duty point), it is important to note that secondary opportunities, such as potential for optimised storage use, derive from consideration of the full hydraulic characteristic. It is therefore important to ensure that the same flow control, or one confirmed to provide equivalent hydraulic performance, is implemented in any final installation.



Typical Hydro-Brake® Head Versus Flow Characteristics

To ensure correct implementation a multiple design-point specification, defining the main hydraulic features of the selected flow control, can be provided by HRD Technologies Ltd. This should include at least the following information:

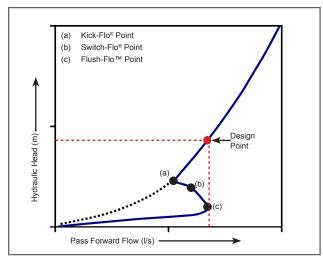
- outlet size and model of Hydro-Brake<sup>®</sup> Flow Control
- definition of the duty/design point (head and flow)
- definition of the Flush-Flo<sup>™</sup> point (head and flow)
- definition of the Kick-Flo<sup>®</sup> point (head and flow)

To ensure that a drainage system performs as designed, it is strongly recommended that this information is reproduced on any technical specifications.

Telephone: +353 (0) 1 4013964 • www.hrdtec.com








# STH Type Hydro-Brake® Flow Control with BBA Approval

# Now included in WinDes® W.12.6!

The new STH type Hydro-Brake<sup>®</sup> Flow Control range has a unique head / discharge performance curve which introduces a very important feature - the Switch-Flo<sup>®</sup> Point. This point illustrates the unique performance feature of the STH range which can lead to further savings in upstream storage, whilst also enabling increased inlet / outlet size to further reduce the risk of blockage.

condition.



Typical STH Head Versus Flow Characteristics

CERTIFICATE No 08/4599 STH Range of

Hydro-Brake<sup>®</sup> Flow Controls

The STH Hydro-Brake<sup>®</sup> Flow Control is the only vortex flow control available today that has been given the prestigious BBA Approval Certificate. The BBA assessment procedure entails rigorous assessment of production and manufacturing standards, and confirms that the hydraulic performance of the Hydro-Brake<sup>®</sup> Flow Control matches the data given to designers by HRD Technologies with their head / discharge curves.



A worked example showing the steps to model a Hydro-Brake<sup>®</sup> Flow Control and associated Stormcell<sup>®</sup> Storage System within Micro Drainage Win*Des*<sup>®</sup> is available on our website:

#### www.hrdtec.com

#### Take a Look at Our New Stormwater Web Resource



Engineering Nature's Way is a brand new resource for people working with Sustainable Drainage and flood management in the UK.

Kick-Flo<sup>®</sup> (a) - the point at which the vortex has initiated and at which the curve begins to return back to follow the orifice curve

and reach the same design point or desired head / flow

NEW Switch-Flo<sup>®</sup> (b) - marks the transition between the Kick-Flo<sup>®</sup> and Flush-Flo<sup>™</sup>, from vortex initiation to stabilisation. This point adds a new layer of resolution to the Hydro-Brake<sup>®</sup> curve that has

Flush-Flo<sup>™</sup> (c) - the point at which the vortex begins to initiate and have a throttling effect. This point on the Hydro-Brake<sup>®</sup> curve is usually much nearer to the maximum design flow (Design Point), than other vortex flow controls leading to more water passing through the unit during the earlier stages of a storm, thus

reducing the amount of water that needs to be stored upstream.

implications to upstream storage savings.

The site provides an opportunity to share news, opinion, information and best practice for people working in local and central Government; developers, consulting engineers and contractors. Do you have something to share? We would be delighted to receive your contributions.

#### turning water around ...<sup>®</sup>

This information is for guidance only and not intended to form part of a contract. HRD Technologies Ltd pursues a policy of continual development and reserves the right to amend specifications without prior notice. Equipment is patented in countries throughout the world.



HRD Technologies Ltd • Tootenhill House • Rathcoole • Co. Dublin • Ireland Tel: +353 (0) 1 4013964 • Fax: +353 (0) 1 4013978 • www.hrdtec.com *HRD Technologies Ltd is a subsidiary of Hydro International plc* 



Appendix A – Storm Water Network Design

| AVANAGH        |            | KE C                                                          | avanagh E<br>onsulting                         |                | rs           |                | Network               | 579 Draina<br>k: Storm N<br>Kedzierski<br>022 | letwork                                                            | ofd F                                                              | Page 1                                                         |                            |
|----------------|------------|---------------------------------------------------------------|------------------------------------------------|----------------|--------------|----------------|-----------------------|-----------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|----------------------------|
|                |            |                                                               |                                                |                | De           | esign So       | <u>ettings</u>        |                                               |                                                                    |                                                                    |                                                                |                            |
| Retu<br>Ac     | M5-        | d (years)<br>Flow (%)<br>R Region<br>60 (mm)<br>Ratio-R<br>CV | 2<br>20<br>Scotlan<br>18.200<br>0.270<br>0.750 | id and Ire     | eland        | Ma             | Mi                    | nimum Ba<br>Preferre<br>nclude Int            | m Rainfa<br>num Velo<br>Conne<br>ackdrop I<br>ed Cover<br>eermedia | ll (mm/l<br>ocity (m<br>ction Ty<br>Height (<br>Depth (<br>te Grou | hr) 50.0<br>/s) 1.00<br>/pe Levo<br>m) 0.20<br>m) 1.20<br>nd √ | 0<br>0<br>el Soffits<br>00 |
| Tin            | ne of Entr | ry (mins)                                                     | 5.00                                           |                |              |                |                       | ce best pr                                    | actice de                                                          | esign rul                                                          | les x                                                          |                            |
|                |            |                                                               |                                                |                |              | Nod            |                       |                                               |                                                                    |                                                                    |                                                                |                            |
|                |            |                                                               | Name                                           | Area<br>(ha)   | T of<br>(mir | ns) Lo         | over E<br>evel<br>(m) | Diameter<br>(mm)                              | Depth<br>(m)                                                       |                                                                    |                                                                |                            |
|                |            |                                                               | SW1                                            | 0.240          | 5.0          |                | 2.400                 | 1200                                          | 1.300                                                              |                                                                    |                                                                |                            |
|                |            |                                                               | SW1                                            | 0.157          |              |                | .280                  | 1200                                          | 1.600                                                              |                                                                    |                                                                |                            |
|                |            |                                                               | SW3                                            | 0.216          |              |                | .250                  | 1200                                          | 1.790                                                              |                                                                    |                                                                |                            |
|                |            |                                                               | SW4                                            | 0.039          | 5.0          | 00 92          | 2.720                 | 1200                                          | 1.610                                                              |                                                                    |                                                                |                            |
|                |            |                                                               | SW5                                            |                |              | 92             | .900                  | 1200                                          | 1.900                                                              |                                                                    |                                                                |                            |
|                |            |                                                               | SW6                                            | 0.109          | 5.0          |                | .950                  | 1200                                          | 2.050                                                              |                                                                    |                                                                |                            |
|                |            |                                                               | SW7                                            | 0.061          |              |                | 2.750                 | 1200                                          | 1.800                                                              |                                                                    |                                                                |                            |
|                |            |                                                               | SW8                                            | 0.180          | 5.0          |                | 2.900                 | 1200                                          | 2.280                                                              |                                                                    |                                                                |                            |
|                |            |                                                               | SW9                                            | 0 1 2 0        | <b>F</b> (   |                | 2.480                 | 1200                                          | 2.140                                                              |                                                                    |                                                                |                            |
|                |            |                                                               | SW10<br>SW11                                   |                | 5.0          |                | 2.560<br>2.570        | 1200<br>1200                                  | 2.360<br>2.664                                                     |                                                                    |                                                                |                            |
|                |            |                                                               | SW11                                           |                | 5 (          |                |                       | 1200                                          | 2.004                                                              |                                                                    |                                                                |                            |
|                |            |                                                               | SW12                                           |                | 5.           |                | 2.250                 | 1200                                          | 2.350                                                              |                                                                    |                                                                |                            |
|                |            |                                                               | SW14                                           |                | 5.0          |                | 2.430                 | 1200                                          | 2.530                                                              |                                                                    |                                                                |                            |
|                |            |                                                               | SW15                                           |                |              | 92             | 2.400                 | 1200                                          | 2.580                                                              |                                                                    |                                                                |                            |
|                |            |                                                               |                                                |                |              | <u>Link</u>    | <u>(S</u>             |                                               |                                                                    |                                                                    |                                                                |                            |
| Name           | US         | DS                                                            | Length                                         | ks (mm         | i)/ (        | US IL          | DS IL                 | Fall                                          | Slope                                                              | Dia                                                                | T of C                                                         | Rain                       |
|                | Node       | Node                                                          | (m)                                            | n              |              | (m)            | (m)                   | (m)                                           | (1:X)                                                              | (mm)                                                               | (mins)                                                         | (mm/hr)                    |
| 1.000          | SW1        | SW2                                                           | 90.000                                         | 0.6            |              | 1.100          | 90.755                |                                               | 260.9                                                              | 300                                                                | 6.55                                                           | 48.8                       |
| 1.001<br>1.002 | SW2<br>SW3 | SW3<br>SW9                                                    | 48.273<br>48.273                               | 0.6<br>0.6     |              | 0.680<br>0.460 | 90.535<br>90.340      |                                               | 332.9<br>402.3                                                     | 375<br>450                                                         | 7.36<br>8.16                                                   | 46.5<br>44.5               |
| 2.000          | SW3<br>SW4 | SW9<br>SW5                                                    | 48.273<br>14.397                               | 0.6            |              | 0.460<br>1.110 | 90.340<br>91.000      |                                               | 402.3<br>130.9                                                     | 450<br>225                                                         | 8.16<br>5.21                                                   | 44.5<br>50.0               |
| 2.000          | SW5        | SW5                                                           | 3.831                                          | 0.6            |              | 1.000          | 90.975                |                                               | 153.3                                                              | 225                                                                | 5.21                                                           | 50.0                       |
| 2.001          | SW6        | SW8                                                           | 48.104                                         | 0.6            |              | 0.900          | 90.695                |                                               | 234.7                                                              | 300                                                                | 6.06                                                           | 50.0                       |
| 3.000          | SW7        | SW8                                                           | 23.966                                         | 0.6            |              | 0.950          | 90.770                |                                               | 133.1                                                              | 225                                                                | 5.35                                                           | 50.0                       |
| 2.003          | SW8        | SW9                                                           | 64.151                                         | 0.6            |              | 0.620          | 90.415                |                                               | 312.9                                                              | 375                                                                | 7.11                                                           | 47.2                       |
|                |            | Name                                                          | Vel                                            | -              | Flow         | US             | DS                    | Σ Area                                        |                                                                    |                                                                    |                                                                |                            |
|                |            |                                                               | (m/s)                                          | (I/s)          | (I/s)        | Depth          | -                     |                                               | Inflo                                                              | -                                                                  |                                                                |                            |
|                |            | 1 000                                                         | 0.000                                          |                | 20.4         | (m)            | (m)                   |                                               | (I/s)                                                              |                                                                    | -                                                              |                            |
|                |            | 1.000                                                         | 0.969                                          | 68.5           | 38.1         | 1.000          |                       |                                               |                                                                    |                                                                    | .60<br>00                                                      |                            |
|                |            | 1.001<br>1.002                                                | 0.987<br>1.007                                 | 109.0<br>160.2 | 60.0<br>88.7 | 1.225<br>1.340 |                       |                                               |                                                                    |                                                                    | .99<br>.40                                                     |                            |
|                |            | 2.000                                                         | 1.141                                          | 45.4           | 6.3          | 1.340          |                       |                                               |                                                                    |                                                                    | .40<br>57                                                      |                            |
|                |            | 2.000                                                         | 1.054                                          | 41.9           | 6.3          | 1.675          |                       |                                               |                                                                    |                                                                    | 59                                                             |                            |
|                |            |                                                               |                                                |                |              |                |                       |                                               |                                                                    |                                                                    | .19                                                            |                            |
|                |            | 2.002                                                         | 1.022                                          | 12.2           | Z4.I         | 1.750          | 1.90                  | J 0.140                                       | , <sub>0</sub> .                                                   | <b>U</b> 1                                                         |                                                                |                            |
|                |            | 2.002<br>3.000                                                | 1.022<br>1.131                                 | 72.2<br>45.0   | 24.1<br>9.9  | 1.750<br>1.575 |                       |                                               |                                                                    |                                                                    | 72                                                             |                            |

| Kavan<br><sup>consulti</sup> |                      |                      | KE G                    | Kavanagh<br>Consulting  |                         | eers                       |                            | Network:                      | 79 Draina<br>Storm Ne<br>edzierski<br>022 |                          | d Pa                      | age 2                    |                                |  |
|------------------------------|----------------------|----------------------|-------------------------|-------------------------|-------------------------|----------------------------|----------------------------|-------------------------------|-------------------------------------------|--------------------------|---------------------------|--------------------------|--------------------------------|--|
|                              |                      |                      |                         |                         |                         |                            | Link                       | <u>s</u>                      |                                           |                          |                           |                          |                                |  |
|                              | lame<br>.003         | US<br>Node<br>SW9    | DS<br>Node<br>SW10      | Length<br>(m)<br>15.089 | -                       | <b>nm) /</b><br>n<br>0.600 | US IL<br>(m)<br>90.340     | <b>DS IL</b><br>(m)<br>90.300 | <b>Fall</b><br>(m)<br>0.040               | Slope<br>(1:X)<br>377.2  | <b>Dia</b><br>(mm)<br>450 | T of C<br>(mins)<br>8.40 | <b>Rain</b><br>(mm/hr)<br>43.9 |  |
| 5                            | .004<br>.000<br>.000 | SW10<br>SW12<br>SW14 | SW11<br>SW13<br>SW15    |                         |                         | 0.600<br>0.600<br>0.600    | 90.200<br>89.905<br>89.900 | 90.180<br>89.900<br>89.820    | 0.020<br>0.005<br>0.080                   | 111.3<br>859.2<br>179.7  | 450<br>450<br>225         | 8.42<br>5.10<br>5.25     | 43.8<br>50.0<br>50.0           |  |
|                              |                      |                      | Name                    | Vel<br>(m/s)            | Cap<br>(I/s)            | Flow<br>(I/s)              |                            | DS<br>Depth<br>(m)            | Σ Area<br>ı (ha)                          | Σ Add<br>Inflow<br>(I/s) |                           | th                       |                                |  |
|                              |                      |                      | 1.003<br>1.004<br>5.000 | 1.041<br>1.926<br>0.685 | 165.5<br>306.3<br>109.0 | 162.6<br>0.0               | 5 1.910<br>0 1.895         | 1.940<br>1.900                | ) 1.140<br>) 0.000                        | 0.0<br>0.0               | ) 23<br>)                 | 33<br>0                  |                                |  |
|                              |                      |                      | 4.000                   | 0.972                   | 38.7                    |                            |                            |                               | 0.000                                     | 0.0                      | )                         | 0                        |                                |  |
|                              |                      | _                    |                         |                         |                         |                            | lanhole S                  | 1                             |                                           |                          |                           |                          |                                |  |
|                              | Node                 | (r                   | ting<br>n)              | Northin<br>(m)          |                         | CL<br>(m)                  | Depth<br>(m)               | Dia<br>(mm)                   | Connec                                    | tions                    | Link                      | IL<br>(m)                | Dia<br>(mm)                    |  |
|                              | SW1                  | 70918                | 36.615                  | 728384.5                | 944 5                   | 92.400                     | 1.300                      | 1200                          | 0                                         | <b>≽</b> 0               |                           |                          |                                |  |
|                              | SW2                  | 70927                | 74.837                  | 728402.3                | 345 9                   | 92.280                     | 1.600                      | 1200                          | 1                                         | 0                        | 1.000                     | 91.100<br>90.755         | 300<br>300                     |  |
|                              | SW3                  | 70026                | 55.652                  | 728449.7                | 26 0                    | 92.250                     | 1.790                      | 1200                          | 0.                                        | 0                        | 1.001                     | 90.680<br>90.535         | 375<br>375                     |  |
|                              | 3003                 | 70920                | JJ.UJZ                  | 720449.7                | 50 3                    | 72.230                     | 1.790                      | 1200                          | $\hat{\Phi}$                              |                          |                           |                          |                                |  |
|                              | SW4                  | 70919                | 92.914                  | 728422.7                | 28 9                    | 92.720                     | 1.610                      | 1200                          |                                           | 0                        | 1.002                     | 90.460                   | 450                            |  |
|                              |                      |                      |                         |                         |                         |                            |                            |                               |                                           | 0                        | 2.000                     | 91.110                   |                                |  |
|                              | SW5                  | 70920                | )1.756                  | 728434.0                | 90 9                    | 92.900                     | 1.900                      | 1200                          | Ĵ                                         | 1                        | 2.000                     | 91.000                   | 225                            |  |
|                              | SW6                  | 70020                | )2.644                  | 728437.8                | 917 (                   | 92.950                     | 2.050                      | 1200                          | 1                                         | 0                        | 2.001                     | 91.000<br>90.975         | 225<br>225                     |  |
|                              | 3000                 | 70920                | 72.044                  | /2043/.0                | <b>)</b> 17 3           | 2.930                      | 2.050                      | 1200                          | $\hat{\Phi}$                              |                          |                           |                          |                                |  |
|                              | SW7                  | 70918                | 38.279                  | 728508.4                | 135 9                   | 92.750                     | 1.800                      | 1200                          | 1                                         | 0                        | 2.002                     | 90.900                   | 300                            |  |
|                              |                      |                      |                         |                         |                         |                            |                            |                               | Ŷ                                         | 0                        | 3.000                     | 90.950                   | 225                            |  |
|                              | SW8                  | 70919                | 93.468                  | 728485.0                | )38 9                   | 92.900                     | 2.280                      | 1200                          |                                           | 1<br>≽₀ 2                | 3.000<br>2.002            |                          |                                |  |
|                              |                      |                      |                         |                         |                         |                            |                            |                               | 2                                         | 0                        | 2.003                     |                          |                                |  |
|                              | SW9                  | 70925                | 56.469                  | 728497.1                | .28 9                   | 92.480                     | 2.140                      | 1200                          |                                           | 1<br>2                   | 2.003<br>1.002            | 90.415<br>90.340         |                                |  |
|                              |                      |                      |                         |                         |                         |                            |                            |                               | 2                                         | 0                        | 1.003                     | 90.340                   | 450                            |  |
|                              |                      |                      | F                       | Flow+ v10               | .1 Cop                  | vright @                   | ) 1988-20                  | 22 Cause                      | way Tech                                  | nologies                 | Ltd                       |                          |                                |  |

Flow+ v10.1 Copyright © 1988-2022 Causeway Technologies Ltd

|                      | Kavanagh Burke       | File: D1679 Drainage PL2.pfd | Page 3 |
|----------------------|----------------------|------------------------------|--------|
| Kavanagh Burke       | Consulting Engineers | Network: Storm Network       |        |
| CONSULTING ENGINEERS |                      | Bartosz Kedzierski           |        |
|                      |                      | 15/04/2022                   |        |

#### Manhole Schedule

| Node | Easting<br>(m) | Northing<br>(m) | CL<br>(m) | Depth<br>(m) | Dia<br>(mm) | Connection              | S | Link  | IL<br>(m) | Dia<br>(mm) |
|------|----------------|-----------------|-----------|--------------|-------------|-------------------------|---|-------|-----------|-------------|
| SW10 | 709253.626     | 728511.947      | 92.560    | 2.360        | 1200        | ()→0                    | 1 | 1.003 | 90.300    | 450         |
|      |                |                 |           |              |             | 1                       | 0 | 1.004 | 90.200    | 450         |
| SW11 | 709255.813     | 728512.365      | 92.570    | 2.664        | 1200        | 1                       | 1 | 1.004 | 90.180    | 450         |
| SW12 | 709277.240     | 728401.721      | 92.250    | 2.345        | 1200        | 0                       |   |       |           |             |
|      |                |                 |           |              |             |                         | 0 | 5.000 | 89.905    | 450         |
| SW13 | 709273.392     | 728399.811      | 92.250    | 2.350        | 1200        | $\bigcirc$ <sup>1</sup> | 1 | 5.000 | 89.900    | 450         |
| SW14 | 709184.756     | 728381.972      | 92.430    | 2.530        | 1200        | ٥                       |   |       |           |             |
|      |                |                 |           |              |             |                         | 0 | 4.000 | 89.900    | 225         |
| SW15 | 709170.692     | 728379.009      | 92.400    | 2.580        | 1200        | $\bigcirc$ -1           | 1 | 4.000 | 89.820    | 225         |

#### Simulation Settings

| Rainfall Methodology | FSR                  | Analysis Speed             | Detailed |
|----------------------|----------------------|----------------------------|----------|
| FSR Region           | Scotland and Ireland | Skip Steady State          | х        |
| M5-60 (mm)           | 18.200               | Drain Down Time (mins)     | 240      |
| Ratio-R              | 0.270                | Additional Storage (m³/ha) | 30.0     |
| Summer CV            | 0.750                | Check Discharge Rate(s)    | х        |
| Winter CV            | 0.840                | Check Discharge Volume     | х        |
|                      |                      |                            |          |

|    | Storm Durations |     |     |     |      |      |      |      |  |  |  |
|----|-----------------|-----|-----|-----|------|------|------|------|--|--|--|
| 15 | 60              | 180 | 360 | 600 | 960  | 2160 | 4320 | 7200 |  |  |  |
| 30 | 120             | 240 | 480 | 720 | 1440 | 2880 | 5760 |      |  |  |  |

| Return Period Climate Change<br>(years) (CC %) |    | Additional Area<br>(A %) | Additional Flow<br>(Q %) |  |
|------------------------------------------------|----|--------------------------|--------------------------|--|
| 30                                             | 20 | 0                        | 0                        |  |
| 100                                            | 20 | 0                        | 0                        |  |

#### Node SW14 Online Hydro-Brake<sup>®</sup> Control

| Flap Valve               | х            | Objective               | (HE) Minimise upstream storage |
|--------------------------|--------------|-------------------------|--------------------------------|
| Replaces Downstream Link | $\checkmark$ | Sump Available          | $\checkmark$                   |
| Invert Level (m)         | 90.010       | Product Number          | CTL-SHE-0073-3000-1670-3000    |
| Design Depth (m)         | 1.670        | Min Outlet Diameter (m) | 0.100                          |
| Design Flow (I/s)        | 3.0          | Min Node Diameter (mm)  | 1200                           |

|                                                                                                         | avanagh Burke<br>onsulting Engine                  | ers                             | File: D1679 Drair<br>Network: Storm<br>Bartosz Kedziers<br>15/04/2022 | Network                          | Page 4                          |                                 |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------|-----------------------------------------------------------------------|----------------------------------|---------------------------------|---------------------------------|
|                                                                                                         | Node SW12                                          | 2 Flow throug                   | h Pond Storage St                                                     | ructure                          |                                 |                                 |
| Side Inf Coefficient (m/hr)                                                                             | 0.00000<br>0.00000<br>2.0 Tim                      | Invert<br>ne to half emp        | Porosity 1.00<br>Level (m) 89.905<br>oty (mins)                       | Main Cha                         | nnel Slope (1:X) 10             | .000<br>000.0<br>015            |
|                                                                                                         |                                                    |                                 | <b>lets</b><br>V11                                                    |                                  |                                 |                                 |
|                                                                                                         | Depth Area<br>(m) (m²)<br>0.000 298.0              | (m²)                            | DepthArea(m)(m²)1.780298.0                                            | Inf Area<br>(m²)<br>0.0          |                                 |                                 |
|                                                                                                         | Node SW14                                          | 4 Flow throug                   | h Pond Storage St                                                     | ructure                          |                                 |                                 |
| Side Inf Coefficient (m/hr) (                                                                           | 0.00000<br>0.00000<br>2.0 Tim                      | Invert<br>ne to half emp        | Porosity 1.00<br>Level (m) 89.900<br>oty (mins)                       | Main Cha                         | nnel Slope (1:X) 10             | .000<br>000.0<br>)15            |
|                                                                                                         |                                                    |                                 | <b>lets</b><br>V13                                                    |                                  |                                 |                                 |
|                                                                                                         | Depth Area<br>(m) (m <sup>2</sup> )<br>0.000 217.4 | (m²)                            | DepthArea(m)(m²)1.780217.4                                            | Inf Area<br>(m²)<br>0.0          |                                 |                                 |
|                                                                                                         |                                                    | <u>Rai</u>                      | <u>nfall</u>                                                          |                                  |                                 |                                 |
| Event                                                                                                   | Peak<br>Intensity<br>(mm/hr)                       | Average<br>Intensity<br>(mm/hr) |                                                                       | Event                            | Peak<br>Intensity<br>(mm/hr)    | Average<br>Intensity<br>(mm/hr) |
| 30 year +20% CC 15 minute summe<br>30 year +20% CC 15 minute winter<br>30 year +20% CC 30 minute summe  | er 259.519<br>182.118                              | 73.435<br>73.435<br>50.387      | 30 year +20% C<br>30 year +20% C                                      | C 2880 minute                    | summer 8.992<br>winter 6.043    | 2.410<br>2.410                  |
| 30 year +20% CC 30 minute winter<br>30 year +20% CC 60 minute summe                                     | 124.959<br>er 124.409                              | 50.387<br>32.878                | 30 year +20% C<br>30 year +20% C<br>30 year +20% C                    | C 4320 minute<br>C 5760 minute   | winter 4.584<br>summer 5.824    | 1.820<br>1.820<br>1.491         |
| 30 year +20% CC 60 minute winter<br>30 year +20% CC 120 minute sumn<br>30 year +20% CC 120 minute winte | ner 79.323<br>r 52.700                             | 20.963<br>20.963                | 30 year +20% C<br>30 year +20% C<br>30 year +20% C                    | C 7200 minute<br>C 7200 minute   | summer 5.006<br>winter 3.231    | 1.491<br>1.277<br>1.277         |
| 30 year +20% CC 180 minute sumn<br>30 year +20% CC 180 minute winte<br>30 year +20% CC 240 minute sumn  | r 40.430<br>her 49.913                             | 13.191                          | 100 year +20%<br>100 year +20%<br>100 year +20%                       | CC 15 minute w<br>CC 30 minute s | vinter 236.742<br>ummer 232.344 | 95.460<br>95.460<br>65.745      |
| 30 year +20% CC 240 minute winte<br>30 year +20% CC 360 minute sumn<br>30 year +20% CC 360 minute winte | ner 38.951                                         | 13.191<br>10.023<br>10.023      | 100 year +20%<br>100 year +20%<br>100 year +20%                       | CC 60 minute s                   | ummer 161.195                   | 65.745<br>42.599<br>42.599      |
| 30 year +20% CC 480 minute sumn<br>30 year +20% CC 480 minute winte<br>30 year +20% CC 600 minute sumn  | ner 31.183<br>r 20.717                             | 8.241<br>8.241<br>7.076         | 100 year +20%<br>100 year +20%<br>100 year +20%                       | CC 120 minute<br>CC 120 minute   | summer 101.792<br>winter 67.628 | 26.901<br>26.901<br>20.405      |
| 30 year +20% CC 600 minute winte<br>30 year +20% CC 720 minute sumn<br>30 year +20% CC 720 minute winte | r 17.677<br>her 23.309                             |                                 | 100 year +20%<br>100 year +20%<br>100 year +20%                       | CC 180 minute<br>CC 240 minute   | winter 51.543<br>summer 63.317  | 20.405<br>16.733<br>16.733      |
| 30 year +20% CC 960 minute sumn<br>30 year +20% CC 960 minute winte<br>30 year +20% CC 1440 minute sum  | ner 19.485<br>r 12.907                             | 5.131<br>5.131<br>3.886         | 100 year +20%<br>100 year +20%<br>100 year +20%                       | CC 360 minute<br>CC 360 minute   | summer 49.049<br>winter 31.883  | 12.622<br>12.622<br>10.321      |
| 30 year +20% CC 1440 minute sum<br>30 year +20% CC 2160 minute sum                                      | er 9.745                                           | 3.886<br>2.940                  | 100 year +20%<br>100 year +20%                                        | CC 480 minute                    | winter 25.947                   | 10.321<br>8.825                 |

|                                     | Kavanagh Burke<br>Consulting Engineers |                                 | File: D1679 Drainage PL2.pfd<br>Network: Storm Network<br>Bartosz Kedzierski<br>15/04/2022 | Page 5 |                              |                                 |  |  |  |
|-------------------------------------|----------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------|--------|------------------------------|---------------------------------|--|--|--|
|                                     | Rainfall                               |                                 |                                                                                            |        |                              |                                 |  |  |  |
| Event                               | Peak<br>Intensity<br>(mm/hr)           | Average<br>Intensity<br>(mm/hr) | Event                                                                                      |        | Peak<br>Intensity<br>(mm/hr) | Average<br>Intensity<br>(mm/hr) |  |  |  |
| 100 year +20% CC 720 minute summer  | 28.969                                 | 7.764                           | 100 year +20% CC 2880 minute                                                               | summer | 10.870                       | 2.913                           |  |  |  |
| 100 year +20% CC 720 minute winter  | 19.469                                 | 7.764                           | 100 year +20% CC 2880 minute                                                               | winter | 7.305                        | 2.913                           |  |  |  |
| 100 year +20% CC 960 minute summer  | 24.084                                 | 6.342                           | 100 year +20% CC 4320 minute                                                               | summer | 8.338                        | 2.180                           |  |  |  |
| 100 year +20% CC 960 minute winter  | 15.954                                 | 6.342                           | 100 year +20% CC 4320 minute                                                               | winter | 5.491                        | 2.180                           |  |  |  |
| 100 year +20% CC 1440 minute summe  | er 17.784                              | 4.766                           | 100 year +20% CC 5760 minute                                                               | summer | 6.929                        | 1.774                           |  |  |  |
| 100 year +20% CC 1440 minute winter | 11.952                                 | 4.766                           | 100 year +20% CC 5760 minute                                                               | winter | 4.485                        | 1.774                           |  |  |  |
| 100 year +20% CC 2160 minute summe  | er 12.939                              | 3.576                           | 100 year +20% CC 7200 minute                                                               | summer | 5.925                        | 1.511                           |  |  |  |
| 100 year +20% CC 2160 minute winter | 8.915                                  | 3.576                           | 100 year +20% CC 7200 minute                                                               | winter | 3.824                        | 1.511                           |  |  |  |

| KAVANAGH BURK           | EC     | avanagh  <br>onsulting |              | rs                    | Netw<br>Barto       |                      | rainage PL2<br>rm Networ<br>erski |                       | Page 6                                      |
|-------------------------|--------|------------------------|--------------|-----------------------|---------------------|----------------------|-----------------------------------|-----------------------|---------------------------------------------|
| <u>Resu</u><br>Node Eve |        | US                     | Peak         | Level                 | Depth               | Inflow               | Node                              | Flood                 | <u>99.71%</u><br>Status                     |
| 15 minute wir           | ntor   | <b>Node</b><br>SW1     | (mins)<br>12 | <b>(m)</b><br>91.584  | <b>(m)</b><br>0.484 | <b>(I/s)</b><br>80.2 | Vol (m <sup>3</sup> )<br>3.2249   | <b>(m³)</b><br>0.0000 | SURCHARGED                                  |
| 4320 minute v           |        | SW1<br>SW2             | 3360         | 91.330                | 0.650               | 4.3                  | 2.6497                            | 0.0000                |                                             |
| 4320 minute v           |        | SW2                    | 3360         | 91.330                | 0.870               | 6.6                  | 4.1344                            | 0.0000                |                                             |
| 4320 minute v           |        | SW4                    | 3360         | 91.330                | 0.220               | 0.4                  | 0.4092                            | 0.0000                |                                             |
| 4320 minute             | winter | SW5                    | 3360         | 91.330                | 0.330               | 0.4                  | 0.3735                            | 0.0000                |                                             |
| 4320 minute v           | winter | SW6                    | 3360         | 91.330                | 0.430               | 1.6                  | 1.1728                            | 0.0000                |                                             |
| 4320 minute v           | winter | SW7                    | 3360         | 91.330                | 0.380               | 0.7                  | 0.8167                            | 0.0000                | SURCHARGED                                  |
| 4320 minute v           | winter | SW8                    | 3360         | 91.330                | 0.710               | 4.2                  | 2.4850                            | 0.0000                | SURCHARGED                                  |
| 4320 minute v           | winter | SW9                    | 3360         | 91.330                | 0.990               | 10.1                 | 1.1199                            | 0.0000                | SURCHARGED                                  |
| 4320 minute v           | winter | SW10                   | 3360         | 91.330                | 1.130               | 11.2                 | 3.2606                            | 0.0000                | SURCHARGED                                  |
| 4320 minute v           | winter | SW11                   | 3360         | 91.330                | 1.424               | 11.1                 | 1.6108                            | 0.0000                | OK                                          |
| 4320 minute v           | winter | SW12                   | 3360         | 91.330                | 1.425               | 8.5                  | 1.6119                            | 0.0000                | SURCHARGED                                  |
| 4320 minute v           | winter | SW13                   | 3360         | 91.330 <mark>0</mark> | 1.430               | 5.9                  | 1.6175                            | 0.0000                | OK                                          |
| 4320 minute v           | winter | SW14                   | 3360         | 91.330                | 1.430               | 4.0                  | 1.6175                            | 0.0000                | SURCHARGED                                  |
| 15 minute sur           | nmer   | SW15                   | 1            | 89.820                | 0.000               | 2.3                  | 0.0000                            | 0.0000                | ОК                                          |
| Link Event              | US     |                        | Link         | D                     | 5 Out               | flow V               | elocity F                         | low/Cap               | Link Discharge                              |
| (Outflow)               | Node   |                        |              | No                    | le (l               | /s) (                | (m/s)                             | -                     | Vol (m <sup>3</sup> ) Vol (m <sup>3</sup> ) |
| 15 minute winter        | SW1    | 1.000                  |              | SW                    | 2                   | 73.9                 | 1.098                             | 1.080                 | 6.3377                                      |

| LINKLYCHU          | 05   | LIIIK             | <b>U4</b> | Outilow | velocity | riow/cap | LIIIK    | Discharge |
|--------------------|------|-------------------|-----------|---------|----------|----------|----------|-----------|
| (Outflow)          | Node |                   | Node      | (I/s)   | (m/s)    |          | Vol (m³) | Vol (m³)  |
| 15 minute winter   | SW1  | 1.000             | SW2       | 73.9    | 1.098    | 1.080    | 6.3377   |           |
| 15 minute winter   | SW2  | 1.001             | SW3       | 108.7   | 1.030    | 0.997    | 5.3244   |           |
| 15 minute winter   | SW3  | 1.002             | SW9       | 169.6   | 1.070    | 1.058    | 7.6485   |           |
| 15 minute winter   | SW4  | 2.000             | SW5       | 12.9    | 0.813    | 0.283    | 0.3113   |           |
| 15 minute winter   | SW5  | 2.001             | SW6       | 12.6    | 0.773    | 0.301    | 0.1301   |           |
| 15 minute winter   | SW6  | 2.002             | SW8       | 47.9    | 0.913    | 0.663    | 3.2828   |           |
| 15 minute winter   | SW7  | 3.000             | SW8       | 20.2    | 0.964    | 0.448    | 0.8752   |           |
| 15 minute summer   | SW8  | 2.003             | SW9       | 105.2   | 1.039    | 0.935    | 7.0757   |           |
| 15 minute winter   | SW9  | 1.003             | SW10      | 272.3   | 1.719    | 1.646    | 2.3616   |           |
| 15 minute winter   | SW10 | 1.004             | SW11      | 314.6   | 1.994    | 1.027    | 0.3385   |           |
| 30 minute winter   | SW11 | Flow through pond | SW12      | 254.9   | 0.075    | 0.004    | 134.2845 |           |
| 30 minute summer   | SW12 | 5.000             | SW13      | 213.9   | 2.423    | 1.962    | 0.6458   |           |
| 30 minute summer   | SW13 | Flow through pond | SW14      | 138.8   | 0.055    | 0.003    | 88.4768  |           |
| 4320 minute winter | SW14 | Hydro-Brake®      | SW15      | 2.7     |          |          |          | 538.7     |
|                    |      |                   |           |         |          |          |          |           |

Max water level in the attenuation and drainage network for storms up to 1:30y return. Critical event duration 3360min. Maximum achieved water level during this event does not exceed the high water level in the proposed attenuation tank (91.68m) therefore proposed attenuation has sufficient capacity to accommodate storms up to 1in30 years return +20%Climate Change. See drawing ref. D1679-D1-PL2 for attenuation base and high water level.

| 15/04/2022                                                                                         |                   |
|----------------------------------------------------------------------------------------------------|-------------------|
| Results for 100 year +20% CC Critical Storm Duration. Lowest mass balance: 9                       | <u>99.71%</u>     |
| Node Event US Peak Level Depth Inflow Node Flood                                                   | Status            |
| Node (mins) (m) (m) (l/s) Vol (m³) (m³)                                                            |                   |
| 15 minute winter SW1 12 92.202 1.102 104.2 7.3488 0.0000                                           | FLOOD RISK        |
| 4320 minute winter SW2 3420 91.676 0.996 5.1 4.0585 0.0000                                         | SURCHARGED        |
| 4320 minute winter SW3 3420 91.676 1.216 7.4 5.7770 0.0000                                         | SURCHARGED        |
| 4320 minute winter SW4 3420 91.676 0.566 0.5 1.0516 0.0000                                         | SURCHARGED        |
| 4320 minute winter SW5 3420 91.676 0.676 0.5 0.7645 0.0000                                         | SURCHARGED        |
| 4320 minute winter SW6 3420 91.676 0.776 1.9 2.1153 0.0000                                         | SURCHARGED        |
| 4320 minute winter SW7 3420 91.676 0.726 0.8 1.5594 0.0000                                         | SURCHARGED        |
| 4320 minute winter SW8 3420 91.676 1.056 5.0 3.6948 0.0000                                         | SURCHARGED        |
| 4320 minute winter SW9 3420 91.676 1.336 11.8 1.5109 0.0000                                        | SURCHARGED        |
| 4320 minute winter SW10 3420 91.676 1.476 13.5 4.2580 0.0000                                       | SURCHARGED        |
| 4320 minute winter SW11 3420 91.676 1.770 13.4 2.0018 0.0000                                       | ОК                |
| 4320 minute winter SW12 3420 91.676 1.771 10.2 2.0029 0.0000                                       | SURCHARGED        |
| 4320 minute winter SW13 3420 91.676 🖓 1.776 7.0 2.0085 0.0000                                      | ОК                |
| 4320 minute winter SW14 3420 91.676 1.776 4.7 2.0085 0.0000                                        | SURCHARGED        |
| 15 minute summer SW15 1 89.820 0.000 2.4 0.0000 0.0000                                             | ОК                |
| Link Event US Link DS Outflow Velocity Flow/Cap                                                    | Link Discharge    |
| (Outflow) Node Node (l/s) (m/s)                                                                    | Vol (m³) Vol (m³) |
| 15 minute winter SW1 1.000 SW2 83.1 1.180 1.213                                                    | 6.3377            |
| 15 minute winter SW2 1.001 SW3 137.3 1.245 1.260                                                   | 5.3244            |
| 15 minute winter         SW3         1.002         SW9         214.2         1.352         1.337   | 7.6485            |
| 15 minute summer SW4 2.000 SW5 16.7 0.827 0.368                                                    | 0.5726            |
| 15 minute summer         SW5         2.001         SW6         21.0         0.723         0.501    | 0.1524            |
| 15 minute winter         SW6         2.002         SW8         54.6         0.918         0.755    | 3.3875            |
| 15 minute summer SW7 3.000 SW8 23.5 0.940 0.522                                                    | 0.9532            |
| 15 minute winter SW8 2.003 SW9 138.7 1.258 1.233                                                   | 7.0757            |
| 15 minute winter SW9 1.003 SW10 353.4 2.231 2.136                                                  | 2.3908            |
| 15 minute winter         SW10         1.004         SW11         401.0         2.531         1.309 | 0.3476            |
| 30 minute winter SW11 Flow through pond SW12 336.7 0.075 0.006                                     | 174.8514          |
| 15 minute winter SW12 5.000 SW13 272.7 2.819 2.502                                                 | 0.6703            |
| 15 minute winter SW13 Flow through pond SW14 139.4 0.090 0.003                                     | 93.9890           |
| 4320 minute winter SW14 Hydro-Brake <sup>®</sup> SW15 3.0                                          | 593.3             |

Max water level in the attenuation and drainage network for storms up to 1:100y return. Critical event duration 3420min. Maximum achieved water level during this event does not exceed the high water level in the proposed attenuation tank (91.68m) therefore proposed attenuation has sufficient capacity to accommodate storms up to 1in100 years return +20% Climate Change. See drawing ref. D1679-D1-PL2 for attenuation base and high water level. Appendix B - Foul Sewer Network Design

| AVANAGH |                | KE C         | avanagh<br>Consultin | Burke<br>g Engine       | ers                 | ۲<br>E           | ile: D167<br>Network: I<br>Bartosz Ke<br>1/10/202 | Foul<br>dziersł |                | ofd Pa             | age 1       |                       |
|---------|----------------|--------------|----------------------|-------------------------|---------------------|------------------|---------------------------------------------------|-----------------|----------------|--------------------|-------------|-----------------------|
|         |                |              |                      |                         | <u>D</u>            | esign Se         | <u>ttings</u>                                     |                 |                |                    |             |                       |
|         | -1             | -            | -                    | use (kDU                | -                   |                  | Mini                                              |                 | /elocity (n    | -                  |             |                       |
|         | Flow pe        |              |                      | lay (l/day<br>w (l/s/ha |                     |                  | inimum B                                          |                 | nection T      |                    | vel Soffits | 5                     |
|         |                |              |                      | w (l/s/ha               | •                   |                  |                                                   |                 | er Depth       |                    |             |                       |
|         |                |              |                      | l Flow (%               | -                   |                  | Include In                                        |                 | -              |                    |             |                       |
|         |                |              |                      |                         |                     | Node             | <u>s</u>                                          |                 |                |                    |             |                       |
|         |                |              |                      | Name                    | Units               | Cover            | Manho                                             | le De           | epth           |                    |             |                       |
|         |                |              |                      |                         |                     | Level<br>(m)     | Туре                                              |                 | m)             |                    |             |                       |
|         |                |              |                      | F1                      | 320.0               | 92.310           | Storm                                             | 1               | .310           |                    |             |                       |
|         |                |              |                      |                         | 150.0               | 92.450           | Storm                                             |                 | .210           |                    |             |                       |
|         |                |              |                      | F3                      | 90.0                | 92.600           | Storm                                             |                 | .500           |                    |             |                       |
|         |                |              |                      | F4                      | o                   | 92.650           | Storm                                             |                 | .700           |                    |             |                       |
|         |                |              |                      | F5                      | 90.0                | 92.450           | Storm                                             |                 | .450           |                    |             |                       |
|         |                |              |                      |                         | 375.0<br>135.0      | 92.400<br>92.770 | Storm<br>Storm                                    |                 | .800<br>.270   |                    |             |                       |
|         |                |              |                      | F7<br>F8                | 50.0                | 92.770           | Storm                                             |                 | .270<br>.780   |                    |             |                       |
|         |                |              |                      | F9                      | 0010                | 92.650           | Storm                                             |                 | .700           |                    |             |                       |
|         |                |              |                      | F10                     |                     | 92.550           | Storm                                             |                 | .690           |                    |             |                       |
|         |                |              |                      | F11                     |                     | 92.550           | Storm                                             |                 | .720           |                    |             |                       |
|         |                |              |                      | F12                     |                     | 92.550           | Storm                                             |                 | .750           |                    |             |                       |
|         |                |              |                      | F13                     |                     | 92.500           | Storm                                             |                 | .730           |                    |             |                       |
|         |                |              |                      | F14<br>F15              |                     | 92.300<br>92.380 | Storm                                             |                 | .870<br>.230   |                    |             |                       |
|         |                |              |                      | LT2                     |                     | 92.560           | Storm                                             | 5               | .230           |                    |             |                       |
|         |                |              |                      |                         |                     | <u>Links</u>     | <u>i</u>                                          |                 |                |                    |             |                       |
|         | Name           | US<br>Node   | DS<br>e Node         | Lengt<br>e (m)          |                     | (mm) /<br>n      | US IL<br>(m)                                      | DS IL<br>(m)    |                | Slope<br>(1:X)     | Dia<br>(mm) |                       |
|         | 1.000          | F1           | F2                   | 76.25                   |                     | 1.500            | 91.000                                            | 90.24           |                |                    | 225         |                       |
|         | 1.001          | F2           | F9                   | 43.50                   |                     | 1.500            | 90.240                                            | 89.95           |                |                    | 225         |                       |
|         | 2.000          | F3           | F4                   | 8.83                    |                     | 1.500            | 91.100                                            | 90.95           |                |                    | 225         |                       |
|         | 2.001          | F4           | F6                   | 20.73                   |                     | 1.500            | 90.950                                            | 90.60           |                |                    | 225         |                       |
|         | 3.000          | F5           | F6                   | 21.78                   |                     | 1.500            | 91.000                                            | 90.60           |                |                    | 225         |                       |
|         | 2.002          | F6           | F8                   | 60.94                   |                     | 1.500            | 90.600                                            | 90.07           |                |                    | 225         |                       |
|         | 4.000<br>2.003 | F7<br>F8     | F8<br>F9             | 24.04<br>18.38          |                     | 1.500<br>1.500   | 90.500<br>90.070                                  | 90.07<br>89.95  |                |                    | 225<br>225  |                       |
|         | 1.002          | F9           | F10                  | 18.63                   |                     | 1.500            | 89.950                                            | 89.86           |                |                    | 225         |                       |
|         | 1.003          | F10          | F11                  | 5.31                    |                     | 1.500            | 89.860                                            | 89.83           |                |                    | 225         |                       |
| Name    | Vel            | -            | Flow                 | US                      | DS                  | Σ Area           | Σ Dwell                                           |                 | Σ Units        | Σ Add              | Pro         | Pro                   |
|         | (m/s)          | (I/s)        | (I/s)                | -                       | Depth               | (ha)             | (ha)                                              | )               | (ha)           | Inflow             | Depth       | Velocity              |
| 1.000   | 1.146          | 15 6         | 8.9                  | (m)                     | <b>(m)</b><br>1.985 | 0 000            |                                                   | 0               | 320.0          | <b>(ha)</b><br>0.0 | (mm)        | <b>(m/s)</b><br>0.887 |
| 1.000   | 0.936          | 45.6<br>37.2 | 8.9<br>10.8          | 1.085<br>1.985          | 2.475               | 0.000<br>0.000   |                                                   | 0<br>0          | 320.0<br>470.0 | 0.0<br>0.0         | 67<br>83    | 0.887<br>0.811        |
| 2.000   | 0.930<br>1.497 | 59.5         | 4.7                  | 1.275                   | 1.475               | 0.000            |                                                   | 0               | 90.0           | 0.0                | 43          | 0.888                 |
| 2.001   | 1.493          | 59.3         | 4.7                  | 1.475                   | 1.575               | 0.000            |                                                   | 0               | 90.0           | 0.0                | 44          | 0.896                 |
| 3.000   | 1.557          | 61.9         | 4.7                  | 1.225                   | 1.575               | 0.000            |                                                   | 0               | 90.0           | 0.0                | 43          | 0.923                 |
| 2.002   | 1.070          | 42.5         | 11.8                 | 1.575                   | 2.555               | 0.000            |                                                   | 0               | 555.0          | 0.0                | 81          | 0.917                 |
| 4.000   | 1.537          | 61.1         | 5.8                  | 2.045                   | 2.555               | 0.000            |                                                   | 0               | 135.0          | 0.0                | 47          | 0.968                 |
|         |                | 200          | 12 6                 | 2 5 5 5 5               | 2 475               | ~ ~ ~ ~          |                                                   | ^               | 740.0          | 0.0                | 94          | 0.856                 |
| 2.003   | 0.926<br>0.796 | 36.8<br>31.6 | 13.6<br>17.4         | 2.555<br>2.475          | 2.475<br>2.465      | 0.000<br>0.000   |                                                   | 0<br>0          | 1210.0         | 0.0                | 119         | 0.830                 |

| VANAGH         |                | KE G              | Kavanag<br>Consulti | -            |                     |                                                                                                                | File: D16<br>Network<br>Bartosz  <br>11/10/2 | :: Foul<br>Kedziers | _                   | PL1.p               | fd Pa                 | age 2              |                 |
|----------------|----------------|-------------------|---------------------|--------------|---------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|---------------------|---------------------|-----------------------|--------------------|-----------------|
|                |                |                   |                     |              |                     | Link                                                                                                           | <u>s</u>                                     |                     |                     |                     |                       |                    |                 |
|                | Name           |                   |                     |              | -                   | <s (mm)="" <="" th=""><th>US IL</th><th>DS I</th><th></th><th>Fall</th><th>Slope</th><th>Dia</th><th></th></s> | US IL                                        | DS I                |                     | Fall                | Slope                 | Dia                |                 |
|                | 1.004          | <b>Nod</b><br>F11 |                     |              | <b>(m)</b><br>4.102 | <b>n</b><br>1.500                                                                                              | <b>(m)</b><br>89.830                         | (m)<br>89.80        |                     | <b>(m)</b><br>0.030 | <b>(1:X)</b><br>136.7 | <b>(mm)</b><br>225 |                 |
|                | 1.004          |                   | F12<br>F13          |              | 4.102<br>5.714      | 1.500                                                                                                          | 89.800                                       |                     |                     | 0.030<br>0.030      |                       | 225                |                 |
|                | 1.005          |                   | F14                 |              | 5.540               | 1.500                                                                                                          | 89.770                                       |                     |                     | 0.340               |                       |                    |                 |
|                | 1.007          |                   | F15                 |              | 4.853               | 1.500                                                                                                          | 89.430                                       |                     |                     | 0.280               |                       | 225                |                 |
|                |                |                   |                     |              |                     |                                                                                                                |                                              |                     |                     |                     |                       |                    |                 |
| Name           | Vel<br>(m/s)   | Cap<br>(I/s)      | Flow<br>(I/s)       | US<br>Deptl  | -                   |                                                                                                                |                                              | ellings<br>a)       | ΣUr<br>(ha          |                     | Σ Add<br>Inflow       | Pro<br>Depth       | Pro<br>Velocity |
|                |                |                   |                     | (m)          | (m)                 |                                                                                                                |                                              | _                   |                     |                     | (ha)                  | (mm)               | (m/s)           |
| 1.004          | 0.981          | 39.0              | 17.4                | 2.49         |                     |                                                                                                                |                                              | 0                   | 121                 |                     | 0.0                   | 105                | 0.952           |
| 1.005          | 0.830          | 33.0<br>22.6      | 17.4<br>17.4        | 2.52         |                     |                                                                                                                |                                              | 0                   | 121                 |                     | 0.0                   | 116<br>117         | 0.842           |
| 1.006<br>1.007 | 0.819<br>0.818 | 32.6<br>32.5      | 17.4<br>17.4        | 2.50<br>2.64 |                     |                                                                                                                |                                              | 0<br>0              | 121<br>121          |                     | 0.0<br>0.0            | 117<br>117         | 0.833<br>0.833  |
| 1.007          | 0.818          | 52.5              | 17.4                | 2.04.        | 5 5.00              | 0.000                                                                                                          |                                              | U                   | 121                 | 0.0                 | 0.0                   | 117                | 0.855           |
|                |                |                   |                     |              | <u>I</u>            | <u>Manhole S</u>                                                                                               | <u>chedule</u>                               |                     |                     |                     |                       |                    |                 |
| Node           | Easti<br>(m    | -                 | Nortl<br>(m         | -            | CL<br>(m)           | Depth<br>(m)                                                                                                   | Dia<br>(mm)                                  | Conr                | nectio              | ons                 | Link                  | IL<br>(m)          | Dia<br>(mm)     |
| F1             | 709270         |                   | 72842               | -            | 92.310              |                                                                                                                | 1200                                         | 0                   |                     |                     |                       | ()                 | ()              |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | A                   | $\mathbf{r}$        |                     |                       |                    |                 |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | Ċ                   | ノ                   |                     |                       |                    |                 |
|                |                |                   |                     |              |                     |                                                                                                                |                                              |                     |                     | 0                   | 1.000                 | 91.000             | 225             |
| F2             | 709255         | 5.725             | 72849               | 5.694        | 92.450              | 2.210                                                                                                          | 1200                                         |                     |                     | 1                   | 1.000                 | 90.240             | 225             |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | .A                  | )                   |                     |                       |                    |                 |
|                |                |                   |                     |              |                     |                                                                                                                |                                              |                     | ſ                   | ~                   | 1 001                 | 00 240             | 225             |
| F3             | 709180         | 0 022             | 72841               | 2 0 5 5      | 92.600              | 1.500                                                                                                          | 1200                                         |                     | 1                   | 0                   | 1.001                 | 90.240             | 225             |
| ГĴ             | VUATO          | 0.023             | 12041               | 2.322        | 92.000              | 1.500                                                                                                          | 1200                                         | ~                   | $\sqrt{2}^{0}$      |                     |                       |                    |                 |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | (                   | $\mathcal{O}$       |                     |                       |                    |                 |
|                |                |                   |                     |              |                     |                                                                                                                |                                              |                     |                     | 0                   | 2.000                 | 91.100             | 225             |
| F4             | 709186         | 6.348             | 72842               | 0.125        | 92.650              | 1.700                                                                                                          | 1200                                         |                     |                     | 1                   | 2.000                 | 90.950             | 225             |
|                |                | -                 |                     | -            |                     |                                                                                                                |                                              | (                   | <u>}</u>            | _                   |                       |                    | -               |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | X                   | 2                   |                     |                       |                    |                 |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | 1                   |                     | 0                   | 2.001                 | 90.950             | 225             |
| F5             | 709228         | 8.028             | 72842               | 8.534        | 92.450              | 1.450                                                                                                          | 1200                                         |                     |                     |                     |                       |                    |                 |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | .f                  | $\mathbf{)}$        |                     |                       |                    |                 |
|                |                |                   |                     |              |                     |                                                                                                                |                                              |                     |                     | -                   |                       | 04 000             |                 |
| F.C.           | 700204         | 6 674             | 71047               | 1 220        | 02 400              | 1 000                                                                                                          | 1200                                         | •                   |                     | 0                   | 3.000                 | 91.000             | 225             |
| F6             | 709206         | 0.0/4             | 72842               | 4.220        | 92.400              | 1.800                                                                                                          | 1200                                         | 1                   | _                   | 1<br>2              | 3.000                 | 90.600<br>90.600   | 225<br>225      |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | 2-(                 | $\mathcal{F}^{1}$   | Z                   | 2.001                 | 50.000             | 223             |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | _                   |                     | 0                   | 2.002                 | 90.600             | 225             |
| F7             | 709190         | 0.143             | 72850               | 7.586        | 92.770              | 2.270                                                                                                          | 1200                                         |                     |                     |                     |                       |                    |                 |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | (                   | $\mathbf{r}$        |                     |                       |                    |                 |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | 4                   |                     |                     |                       |                    |                 |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | Ì                   | v<br>0              | 0                   | 4.000                 | 90.500             | 225             |
| F8             | 709195         | 5.049             | 72848               | 4.052        | 92.850              | 2.780                                                                                                          | 1200                                         | 1<br>\              |                     | 1                   | 4.000                 | 90.070             | 225             |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | (†                  | <del>} &gt;</del> 0 | 2                   | 2.002                 | 90.070             | 225             |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | 4                   | ſ                   | ~                   | 2 002                 | 00 070             | 225             |
| F9             | 709213         | 2 102             | 72848               | 7 5 1 6      | 92.650              | 2.700                                                                                                          | 1200                                         | :                   | 2                   | 0                   | 2.003                 | 90.070<br>89.950   | 225<br>225      |
| ГЭ             | 70921:         | J.1UZ             | 12040               | 010.1        | 52.50               | 2.700                                                                                                          | 1200                                         | ~                   | <u> </u>            | 1                   | 1.001                 | 89.950<br>89.950   | 225             |
|                |                |                   |                     |              |                     |                                                                                                                |                                              | 1-(1                | $+^{2}$             | 2                   | 1.001                 | 05.550             | 223             |
|                |                |                   |                     |              |                     |                                                                                                                |                                              |                     | ò                   | 0                   | 1.002                 | 89.950             | 225             |
|                |                |                   |                     |              |                     |                                                                                                                |                                              |                     |                     |                     |                       |                    |                 |

|                      | Kavanagh Burke       | File: D1679 Drainage PL1.pfd | Page 3 |
|----------------------|----------------------|------------------------------|--------|
| Kavanagh Burke       | Consulting Engineers | Network: Foul                | C      |
| CONSULTING ENGINEERS |                      | Bartosz Kedzierski           |        |
|                      |                      | 11/10/2021                   |        |

# Manhole Schedule

| Node | Easting<br>(m) | Northing<br>(m) | CL<br>(m) | Depth<br>(m) | Dia<br>(mm) | Connections |   | Link  | IL<br>(m) | Dia<br>(mm) |
|------|----------------|-----------------|-----------|--------------|-------------|-------------|---|-------|-----------|-------------|
| F10  | 709216.644     | 728469.218      | 92.550    | 2.690        | 1200        |             | 1 | 1.002 | 89.860    | 225         |
|      |                |                 |           |              |             | v<br>o      | 0 | 1.003 | 89.860    | 225         |
| F11  | 709217.654     | 728463.999      | 92.550    | 2.720        | 1200        |             | 1 | 1.003 | 89.830    | 225         |
|      |                |                 |           |              |             | v<br>o      | 0 | 1.004 | 89.830    | 225         |
| F12  | 709218.434     | 728459.972      | 92.550    | 2.750        | 1200        |             | 1 | 1.004 | 89.800    | 225         |
|      |                |                 |           |              |             |             | 0 | 1.005 | 89.800    | 225         |
| F13  | 709224.044     | 728461.058      | 92.500    | 2.730        | 1200        | 1-0         | 1 | 1.005 | 89.770    | 225         |
|      |                |                 |           |              |             | v<br>o      | 0 | 1.006 | 89.770    | 225         |
| F14  | 709236.690     | 728395.731      | 92.300    | 2.870        | 1200        | 0 <         | 1 | 1.006 | 89.430    | 225         |
|      |                |                 |           |              |             |             | 0 | 1.007 | 89.430    | 225         |
| F15  | 709182.921     | 728384.882      | 92.380    | 3.230        | 1200        | <i>G</i> -1 | 1 | 1.007 | 89.150    | 225         |

Appendix C - Irish Water Confirmation of Feasibility and Statement of Design Acceptance



Bartosz Kedzierski

Unit G3 Calmount Business Park Ballymount Dublin 12 Co. Dublin D12 Y05

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

13 September 2021

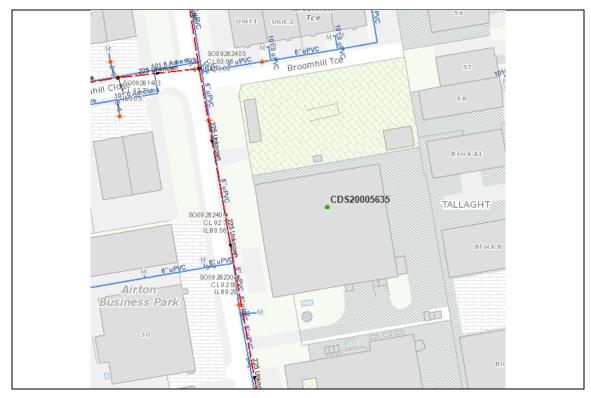
## Re: CDS20005635 pre-connection enquiry - Subject to contract | Contract denied

## Connection for Housing Development of 252 units at Broomhill Road, Tallaght, Dublin 24, Dublin

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Broomhill Road, Tallaght, Dublin 24, Dublin (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

| SERVICE                | OUTCOME OF PRE-CONNECTION ENQUIRY<br><u>THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A</u><br><u>CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH</u><br><u>TO PROCEED.</u> |  |  |  |  |  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Water Connection       | Feasible Subject to upgrades                                                                                                                                                             |  |  |  |  |  |  |  |
| Wastewater Connection  | Feasible Subject to upgrades                                                                                                                                                             |  |  |  |  |  |  |  |
| SITE SPECIFIC COMMENTS |                                                                                                                                                                                          |  |  |  |  |  |  |  |
| Water Connection       | Upgrade of existing 6" uPVC to 200mm ID pipe for approximately 275m (dashed line in figure below) is required for the connection.                                                        |  |  |  |  |  |  |  |


Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

REV012

|                       | Additionally, at connection application stage, local pressure tests must be<br>performed to identify any other local water network upgrades which may be<br>required for the connection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | The upgrades will be funded by the Customer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Wastewater Connection | Irish Water can facilitate the connection subject to the development<br>adhering to strict flow management. This is to ensure no further detriment in<br>the downstream network resulting from the new connections to the existing<br>sewer. The flow control and storage measures will be installed, owned,<br>operated and managed by the developer locally on the private side, and will<br>be required until Irish Water have increased capacity in the downstream<br>network. Providing this arrangement can be facilitated and managed on the<br>private network, your connection can be facilitated subject to a Connection<br>Agreement with Irish Water. The period of time for operating and<br>maintaining flow control measures are subject to the delivery of the public<br>network upgrade and will be a condition of any potential connection. The<br>capital upgrade project is currently at preliminary design stage.<br>In addition to the above removing any existing misconnections or installing<br>dedicated separate storm water systems will be required to preserve the<br>existing capacity for foul only flows.<br>Local Network upgrades or extensions required to connect to strategic<br>infrastructure and point of connection will be assessed at connection<br>application stage. |

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

## The map included below outlines the current Irish Water infrastructure adjacent to your site:



Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

#### **General Notes:**

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- 2) This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at <a href="https://www.water.ie/connections/get-connected/">https://www.water.ie/connections/get-connected/</a>
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at <u>https://www.water.ie/connections/information/connection-charges/</u>
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email <u>datarequests@water.ie</u>
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Marina Byrne from the design team via email mzbyrne@water.ie For further information, visit **www.water.ie/connections.** 

Yours sincerely,

Gronne Maesis

Yvonne Harris Head of Customer Operations



Bartosz Kedzierski Unit F3 Calmount Business Park Ballymount Dublin 12, Co. Dublin D12 Y05

6 May 2022

#### Re: Design Submission for Broomhill Road, Tallaght, Dublin 24, Dublin (the "Development") (the "Design Submission") / Connection Reference No: CDS20005635

Dear Bartosz Kedzierski,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document\_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Antonio Garzón Phone: 0838983711 Email: antonio.garzon@water.ie

Yours sincerely,

Monne Maesis

Yvonne Harris Head of Customer Operations Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

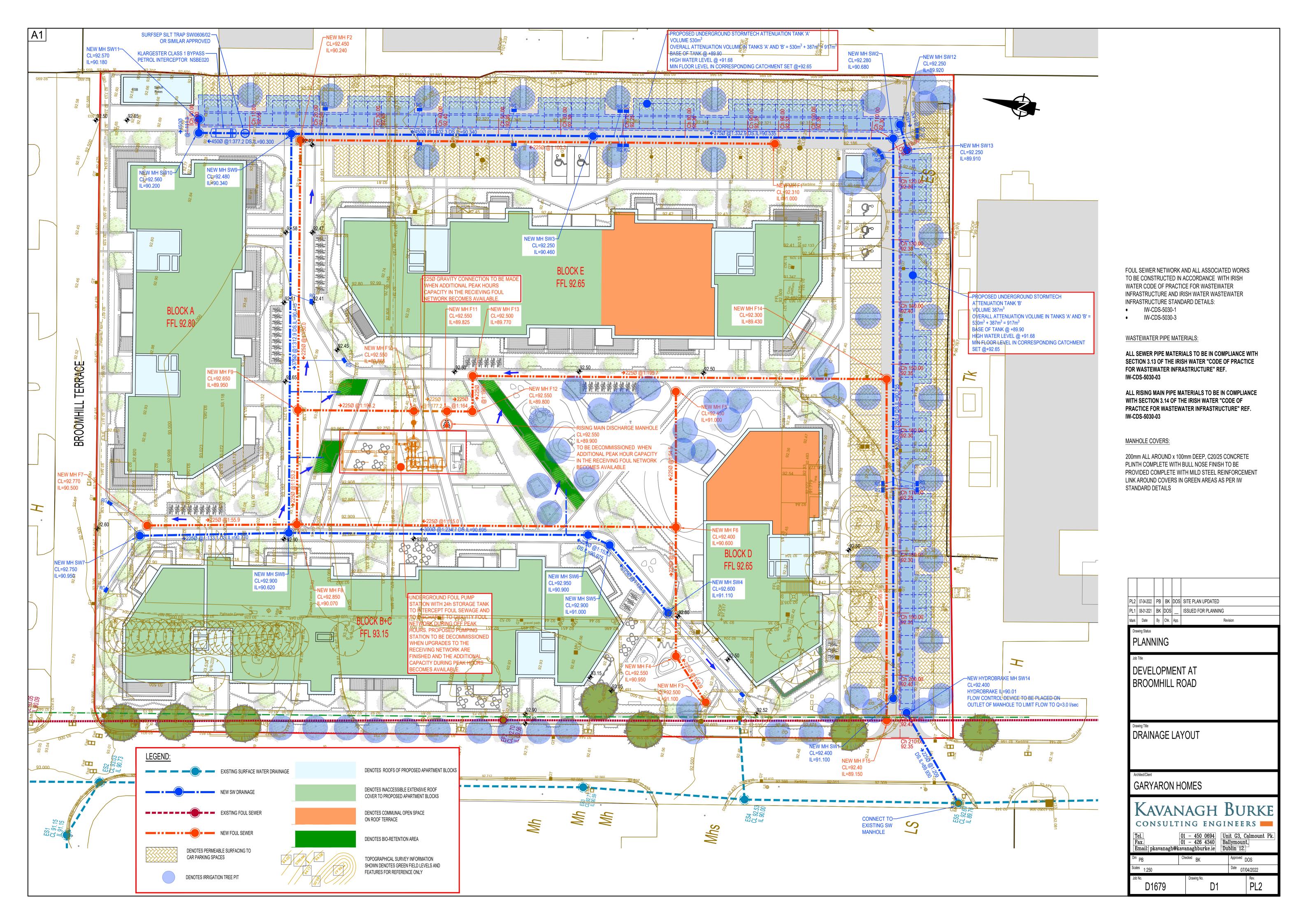
www.water.ie

## Appendix A

#### **Document Title & Revision**

- D1679 D1 Drainage Layout PL2
- D1679 D2 Watermain Layout PL2
- D1679 D3 Foul Long Sections PL2

## Standard Details/Code of Practice Exemption:


1. Pump station and rising main arrangements

#### **Additional Comments**

The design submission will be subject to further technical review at connection application stage. This Statement of Design Acceptance does not extend to proposed pump station and rising main arrangements. The pump station and rising main will be vested at connection application stage

For further information, visit www.water.ie/connections

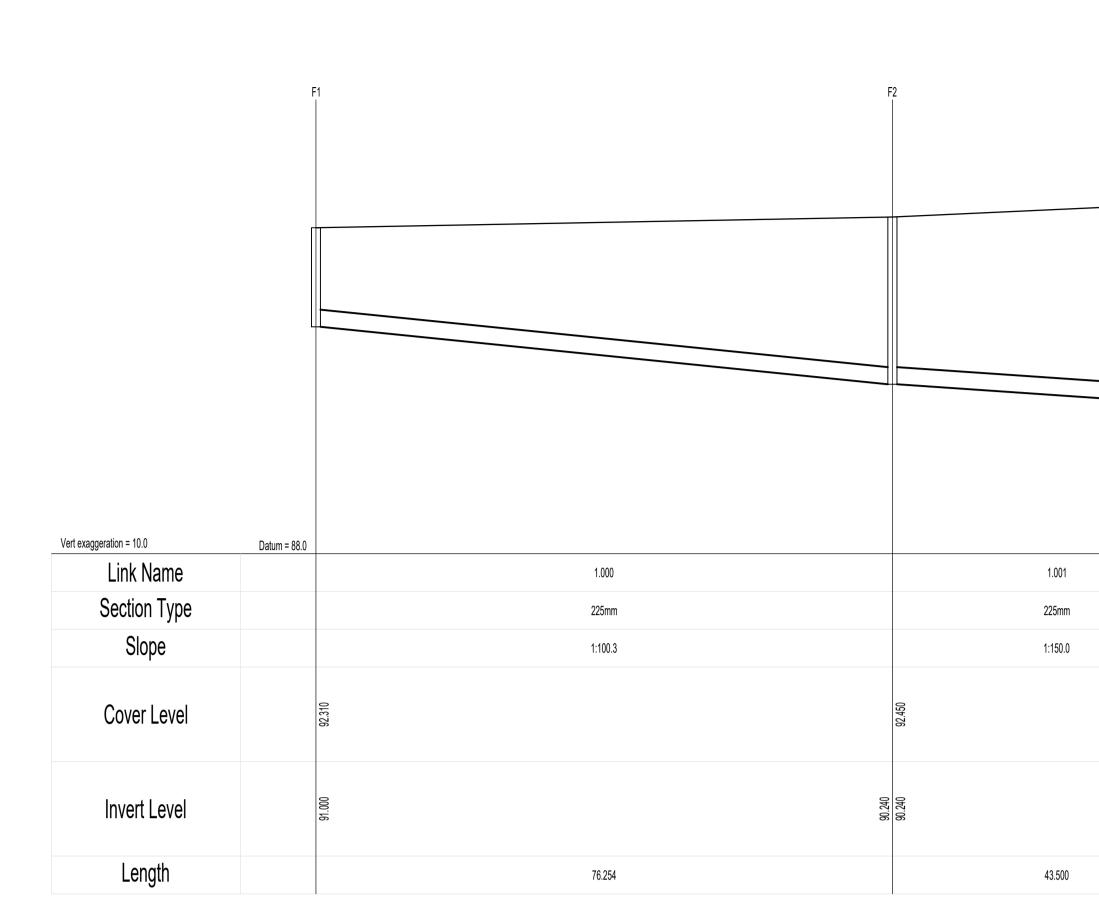
<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.



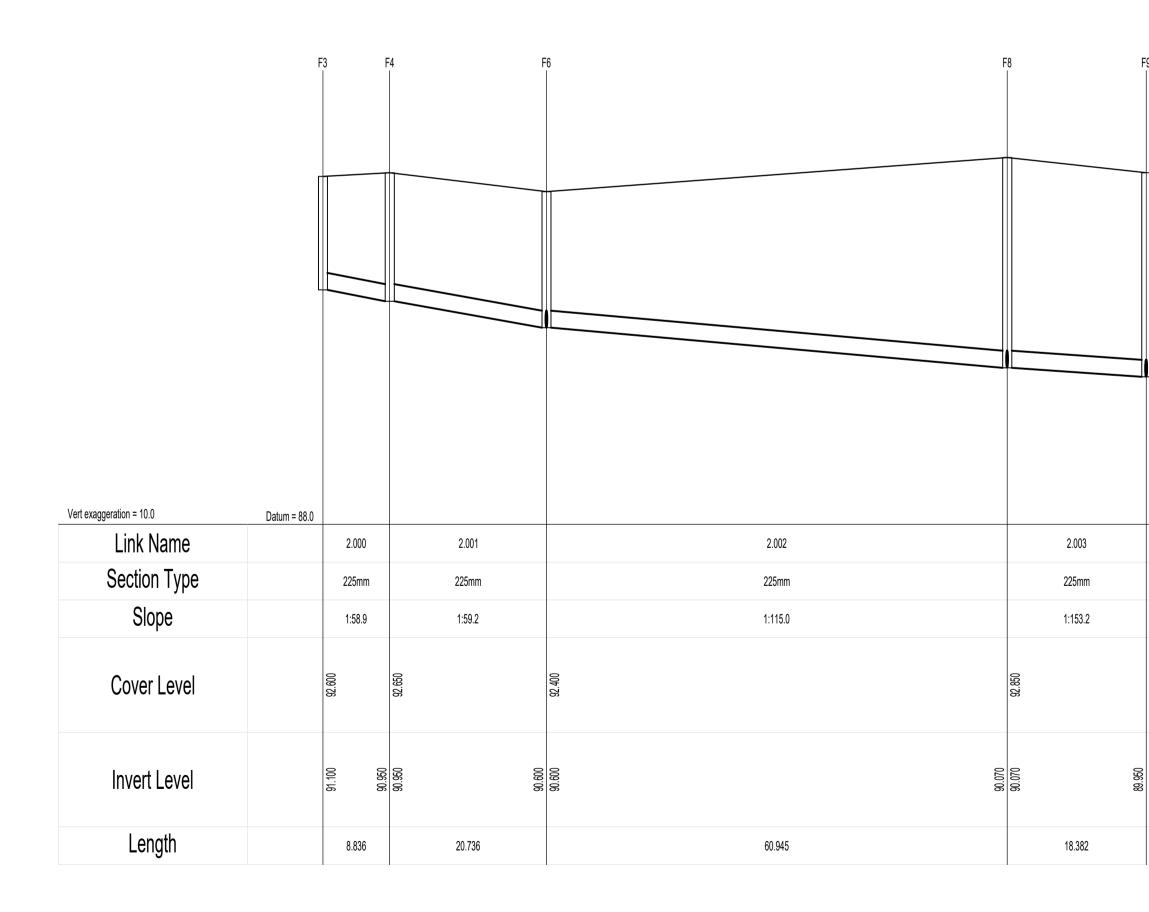


SCOUR VALVE (OFFLINE) WITH THE APPROPRIATE SCOUR CHAMBER WITH NON RETURN VALVE TO BE PROVIDED IN THE NETWORK LOW POINT IN ACCORDANCE WITH SECTIONS 3.16.4 AND 3.21 OF RISH WATER CODE OF PRACTICE FOR WATER INFRASTRUCTURE.

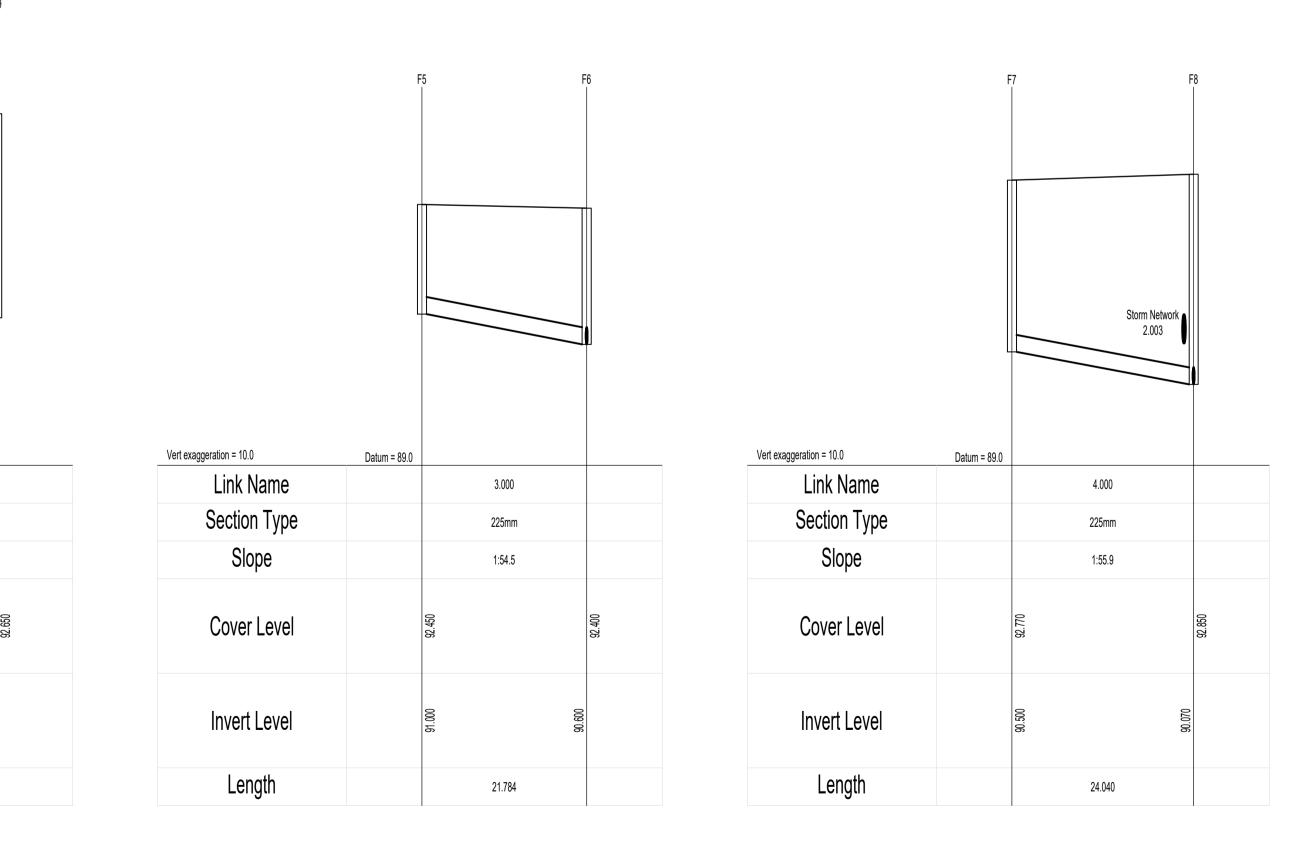
WATERMAIN NETWORK AND ALL ASSOCIATED WORKS TO BE CONSTRUCTED IN ACCORDANCE IN ACCORDANCE WITH IRISH WATER CODE OF PRACTICE FOR WATER INFRASTRUCTURE AND IRISH WATER WATER INFRASTRUCTURE STANDARD DETAILS:

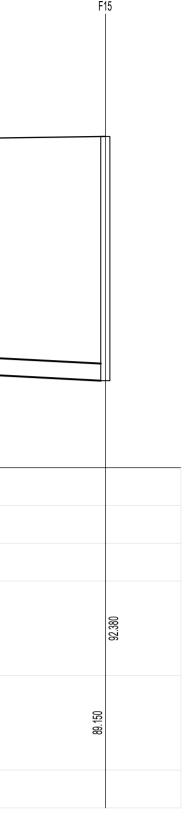

 IW-CDS-5020-1 • IW-CDS-5020-3

WATERMAIN PIPE MATERIALS:


ALL WATERMAIN PIPE MATERIALS TO BE IN COMPLIANCE WITH SECTION 3.9 OF THE IRISH WATER "CODE OF PRACTICE FOR WATER INFRASTRUCTURE" REF. IW-CDS-5020-03

WATERMAIN PIPES TO BE LAID AT MIN 1M FROM THE TREE TRUNK BASE OR AT DISTANCE OF 4X THE GIRTH OF THE TREE MEASURED FROM THE CENTER OF TREE (WHICHEVER IS GREATER) IN ACCORDANCE WITH IW STANDARD DETAIL STD-W-12A. TREE ROOT BARRIERS TO BE PROVIDED TO ALL TREES ADJACENT TO WATERMAIN PIPES


| NTERNAL WATER DISTRIBUTION SYSTEMS FOR FIRE<br>ND WATER SUPPLY WITH THEIR ANCILLARY STORAGE<br>PUMPING SYSTEMS TO M&E ENGINEER'S DESIGN.<br>PECIFICATION AND CONNECTION SIZES TO BE<br>AT DETAIL DESIGN/CONNECTION APPLICATION STAGE.<br>ABLE ISOLATION DEVICES (TOGETHER WITH AN<br>E CONNECTION ARRANGEMENT) IN ACCORDANCE<br>ON 3.13 OF IRISH WATER CODE OF PRACTICE FOR<br>RASTRUCTURE WILL BE PROVIDED ON ALL SERVICE<br>INS TO PREVENT BACK FLOW FROM INTERNAL WATER<br>ON SYSTEMS TO IRISH WATER'S NETWORK.<br>BULK FLOW METER AND ASSOCIATED TELEMETRY | LEGEND:<br>WM WM EXISTING WATER MAIN<br>HYDRANT<br>WVM SV NEW WATER MAIN<br>DENOTES 124 No. OF DWELLINGS TO BE<br>CONSTRUCTED UNDER PLANNING PERMISSION                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THE FIRE MAIN CONNECTION TO BE PROVIDED AT THE<br>S COST. THE CONNECTION TO BE PROVIDED WITH A<br>E TO PREVENT BACKFLOW INTO THE WATER<br>(STEM.                                                                                                                                                                                                                                                                                                                                                                                                               | REG REF. 19/885 AND 19/886 AND TO BE<br>CONNECTED TO EXISTING WATERMAIN NETWORK<br>DENOTES EXTENSIVE ROOF COVER TO<br>PROPOSED APARTMENT BLOCKS                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DENOTES COMMUNAL OPEN SPACE<br>ON ROOF TERRACE<br>TOPOGRAPHICAL SURVEY INFORMATION<br>SHOWN DENOTES GREEN FIELD LEVELS AND<br>FEATURES FOR REFERENCE ONLY                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PL2     07-04-2022     PB     BK     DOS     SITE PLAN UPDATED       PL1     08-01-2021     BK     DOS      ISSUED FOR PLANNING       Mark     Date     By     Chk.     App.     Revision                                                      |
| R AND ASSOCIATED TELEMETRY<br>L BE PROVIDED TO MEASURE<br>D OF THE DEVELOPMENT AS PER<br>S.6 CF IW CODE OF PRACTICE FOR<br>RASTRUCTURE. BULK WATER<br>BE IN ACCORDANCE WITH<br>15.4 OF THE IW CODE OF<br>OR WATER INFRASTRUCTURE. AN<br>YDRANT WILL BE LOCATED ON<br>ORK DOWNSTREAM OF THE<br>MBER ALONG WITH A SLUICE                                                                                                                                                                                                                                         | Drawing Status<br>PLANNING<br>Job Title<br>DEVELOPMENT AT<br>BROOMHILL ROAD                                                                                                                                                                    |
| WM WM WM 901<br>SG1 26 Kerbline PPI 26<br>91<br>8<br>91<br>8<br>91<br>8<br>91<br>8<br>91<br>8<br>91<br>8<br>91<br>8<br>91<br>8<br>91<br>8<br>91<br>8<br>91<br>8<br>91<br>8<br>91<br>8<br>91<br>8<br>91<br>8<br>91<br>8<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91<br>91                                                                                                                                                                                                                                                                             | Drawing Title<br>WATERMAIN LAYOUT                                                                                                                                                                                                              |
| 652 - 1520 - 308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Architect/Client<br>GARYARON HOMES<br>Kavanagh Burke                                                                                                                                                                                           |
| 92.081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tel.       01 - 450 0694       Unit G3, Calmount Pk.         Fax.       01 - 426 4340       Ballymount,         Email:       pkavanagh@kavanaghburke.ie       Dublin 12.         Dm       PB       Checked       BK         Approved       DOS |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scales         1:250         Date         07/04/2022           Job No.         Drawing No.         Rev.         PL2                                                                                                                            |




A1



| P       P0       P1       P2       P3       P4         Image: Point Pice Pice Pice Pice Pice Pice Pice Pice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                | <u>_</u> | F40 F                      |                  | 40 F             | -       |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|----------------------------|------------------|------------------|---------|---------|
| Image: A bit of the state o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 9        | F10 F                      | ·11 F'           | 12 F             | F       | 14      |
| Image: A bit of the state o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |          |                            |                  |                  |         |         |
| Image: A bit of the state o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |          |                            |                  |                  |         |         |
| 1:19521:1721:1611:1951:195.71:195.7 $825$ $825$ $825$ $825$ $825$ $825$ $825$ $825$ $825$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$ $826$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 1.002    | 1.003                      | 1.004            | 1.005            | 1.006   | 1.007   |
| 89.350<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>89.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.300<br>80.3000<br>80.3000<br>80.3000<br>80.3000<br>80.3000<br>80.3000<br>80.3000<br>80.3000<br>80.3000 |                  | 225mm    | 225mm                      | 225mm            | 225mm            | 225mm   | 225mm   |
| 89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>89.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.430<br>80.4300<br>80.4300<br>80.4300<br>80.4300<br>80.4300<br>80.4300<br>80.4300<br>80.4300<br>80.4300<br>80.4300<br>80.4300<br>80.4000<br>80.4000<br>80.4000<br>80.4000<br>80.4000<br>80.4000<br>80.4000<br>80.4000<br>80.4000<br>80.4000<br>80.4000<br>80.4000<br>80.4000<br>80.40000<br>80.40000<br>80.40000000000                                                                                                                                                                              |                  | 1:196.2  | 1:177.2                    | 1:164.1          | 1:190.5          | 1:195.7 | 1:195.9 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 92.650   | 92.550                     | 92.550           | 92.550           |         | 92.300  |
| 18.638         5.316         4.102         5.714         66.540         54.853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89.950<br>89.950 | 89.950   | 89.855<br>89.855<br>89.825 | 89.825<br>89.800 | 89.800<br>89.770 | 89.430  | 89.430  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 18.638   | 5.316                      | 4.102            | 5.714            | 66.540  | 54.853  |





| PL2         | 09-04-2022                                                                                            | BK | DOS  | _    | ISSUED FOR PLANNING |           |             |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------|----|------|------|---------------------|-----------|-------------|--|--|--|--|
| Mark        | Date                                                                                                  | Ву | Chk. | Арр. | Rev                 | rision    |             |  |  |  |  |
|             | Drawing Status PLANNING                                                                               |    |      |      |                     |           |             |  |  |  |  |
| B           | DEVELOPMENT AT<br>BROOMHILL ROAD                                                                      |    |      |      |                     |           |             |  |  |  |  |
| W           | Drawing Title<br>WATERMAIN LAYOUT                                                                     |    |      |      |                     |           |             |  |  |  |  |
|             | hitect/Client                                                                                         | AR | ON   | 1 H( | OMES                |           |             |  |  |  |  |
| (<br>T<br>F | Kavanagh BurkeConsulting engineersTel.01 - 450 0694Fax.01 - 426 4340Email: pkavanagh@kavanaghburke.ie |    |      |      |                     |           |             |  |  |  |  |
|             | BK                                                                                                    |    | -    |      | Checked PK          | Approved  | _           |  |  |  |  |
| Scale       | <sup>es</sup> 1:500                                                                                   |    |      | !    |                     | Date 07/0 | 04/2022     |  |  |  |  |
| Job         | <sup>No.</sup> D1                                                                                     | 67 | 9    |      | Drawing No. D3      |           | Rev.<br>PL2 |  |  |  |  |